

comboleetor.pl -
A Password List Generator

-~+~-
Jim Brown

jpb@jimby.name

comboleetor.pl

● The problem:
– You need to generate a comprehensive password

list using known text elements, numbers, and
punctuation, possibly with added “leetspeak” - i.e.

+3><+ (“text”)

|=/2()|\/| (“from”)

7#3 (“the”)

|-|@K3r$ (“hackers”)

comboleetor.pl

● comboleetor.pl combines text blocks, numbers,
and punctuation in any order determined by an
input specification. The resulting output can be
further subjected to 'leetspeak' substitutions
and serial capitalization.

comboleetor.pl

Usage:

perl comboleetor.pl [-b blocksfile] [-n numbersfile] [-c] [-s] [-h | H]

 - where blocksfile and numbersfile contain text blocks
 and numbers respectively,
 - default files are blocks.txt and numbers.txt
 in the current directory.

 -c Serialize capitalization throughout the output word
 -s Print all hashes and exit
 -h Print short help (this text)
 -H Print longer help text with examples

comboleetor.pl

● The “blocks.txt” file contains words (or text
fragments):

cat+

dog-

marsh

mellow

23skidoo

07/04/1976

correct

horse

battery

staple

comboleetor.pl

● The “numbers.txt” file contains numbers, lists,
and/or a number format specification (loosely
based on the perl sprintf function) that
generates a list of numbers to use:

%03.3d

1,2,4,10-15,200-300

%05.5x

40-50

%d

19-25

comboleetor.pl
● The input specification allows for up to eight

characters of the following set in any order:
B – text block

b – text blocks subjected to leet substitutions

N - number elements

P - punctuation elements from the set

 ⎕!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

● The goal is to produce all possible combinations
of these elements in the order they are specified.
The specification of elements comes from the
user on stdin via terminal, pipe, file, etc.

comboleetor.pl
Example 1: Basic Usage

● blocks.txt file:
tin

can

● numbers.txt file:
31,72,2600

5

echo ‘BB’ | perl comboleetor.pl 2> /dev/null
can

cantin

cancan

tin

tintin

tincan

comboleetor.pl
Example 1 (cont.)

echo ‘BN’ | perl comboleetor.pl 2> /dev/null
tin

tin5

tin31

tin72

tin2600

can

can5

can31

can72

can2600

comboleetor.pl
Example 1 (cont.)

echo ‘BPB’ | perl comboleetor.pl 2> /dev/null
can
can
can tin
can can
can!
can!tin
can!can
can"
can"tin
can"can
can#
can#tin
can#can
can$
can$tin
can$can
can%
can%tin

tin_
tin_tin
tin_can
tin`
tin`tin
tin`can
tin{
tin{tin
tin{can
tin|
tin|tin
tin|can
tin}
tin}tin
tin}can
tin~
tin~tin
tin~can

. . .

This example generated
 200 lines of output.

comboleetor.pl

echo ‘BNP’ | perl comboleetor.pl 2> /dev/null

. . .

This example generated
 274 lines of output.

tin
tin5
tin5
tin5!
tin5"
tin5#
tin5$
tin5%
tin5&
tin5'
tin5(
tin5)
tin5*
tin5+
tin5,
tin5-

can2600;
can2600=
can2600<
can2600>
can2600?
can2600@
can2600[
can2600\
can2600]
can2600^
can2600_
can2600`
can2600{
can2600|
can2600}
can2600~

Example 1 (cont.)

comboleetor.pl
Example 2: Using number formats and number ranges

● blocks.txt file:
tin

can

● numbers.txt file:
%05.5d

20-30,90-120

echo ‘BN’ | perl comboleetor.pl 2> /dev/null

tin
tin00020
tin00021
tin00022
tin00023
tin00024
tin00025
tin00026
tin00027
tin00028
tin00029
tin00030

. . .

tin00115
tin00116
tin00117
tin00118
tin00119
tin00120
can
can00020
can00021
can00022
can00023
can00024

. . .

can00111
can00112
can00113
can00114
can00115
can00116
can00117
can00118
can00119
can00120

comboleetor.pl
Example 3: Combining numbers with text and punctuation

● blocks.txt file:
tin

can

● numbers.txt file:
%05.5x

10-20,50-1000

echo ‘BPN’ | perl comboleetor.pl 2> /dev/null

can
can
can 0000a
can 0000b
can 0000c
can 0000d
can 0000e
can 0000f
can 00010
can 00011
can 00012
can 00013

. . .

can~003e2
can~003e3
can~003e4
can~003e5
can~003e6
can~003e7
can~003e8
tin
tin
tin 0000a
tin 0000b
tin 0000c

. . .

can~003dd
can~003de
can~003df
can~003e0
can~003e1
can~003e2
can~003e3
can~003e4
can~003e5
can~003e6
can~003e7
can~003e8

 63560 lines
of output.Note space

is a
punctuation
character.

Note ‘x’ for
hexadecimal

comboleetor.pl
Example 4: Using leetspeak with ‘b’

● blocks.txt file:
tin

can

● numbers.txt file:
%05.5x

10-20,50-1000

echo ‘b’ | perl comboleetor.pl 2> /dev/null

ti|\|
+in
c@|\|
+!n
(@n
c/-\n
(4n
(/-\|\|
ca|\|
t!|\|
(an
c4|\|

can
(4|\|
t!n
c/-\|\|
c4n
(a|\|
c@n
(/-\n
+!|\|
(@|\|
+i|\|
tin

7in
7!n
7!|\|
7i|\|

Note that some letters have
multiple leetspeak
representations. For example
the letter ‘a’ is represented by:

a, 4, @, /-\

Each is used in turn.

comboleetor.pl
Example 5: Serial capitalization of text with ‘-c’

● blocks.txt file:
tin

can

● numbers.txt file:
%05.5x

10-20,50-1000

echo ‘B’ | perl comboleetor.pl -c 2> /dev/null
can
can
Can
cAn
CAn
caN
CaN
cAN
CAN
tin
tin
Tin

tIn
TIn
tiN
TiN
tIN
TIN

comboleetor.pl
Example 6: Combining leetspeak with serial capitalization

● blocks.txt file:
tin

can

● numbers.txt file:
%05.5x

10-20,50-1000

echo ‘b’ | perl comboleetor.pl -c 2> /dev/null

ca|\|
ca|\|
Ca|\|
cA|\|
CA|\|
ti|\|
ti|\|
Ti|\|
tI|\|
TI|\|
c/-\n
c/-\n

C/-\n
c/-\N
C/-\N
(an
(an
(An
(aN
(AN
+!n
+!n
+!N
can

can
Can
cAn
CAn
caN

Note that capitalization only
applies to actual ASCII letters,
not leetspeak representations.

c → C, a → A, n → N

 104 lines
of output.

comboleetor.pl
Example 7: Viewing the hashes with ‘-s’

● blocks.txt file:
tin

can

● numbers.txt file:
%05.5x

10-20

echo ‘B’ | perl comboleetor.pl -s 2> /dev/null

Prints out the contents of each hash table and exits.

● Blocks Hash
● Numbers Hash
● Main Leetz Hash (primary leetspeak hash)
● Alternate 1 Leetz Hash (secondary leetspeak hash)
● Alternate 2 Leetz Hash (tertiary leetspeak hash)
● Punctuation Hash
● Leethash Hash (result of hashing Blocks Hash)

comboleetor.pl
Example 8: Interactive use

● blocks.txt file:
tin

can

● numbers.txt file:
%05.5x

10-17

perl comboleetor.pl

:>> N
NUMS

===============
0000a
0000b
0000c
0000d
0000e
0000f
00010
00011
:>>

Interactive
Command

prompt

User
input

Program
output

comboleetor.pl
Example 9: Tricks

● blocks.txt file:
tin+

can!

● Suppose you only want a single character
appended to a word as the basis for a text block:

● You can use it in combination with the other examples:

echo ‘BB’ | perl comboleetor.pl -c 2> /dev/null
can!
can!tin+
can!can!
tin+
tin+tin+
tin+can!

comboleetor.pl
Example 9: Tricks (cont.)

● The more you know about how your target might use
familiar objects (children’s names, birthdays, planets,
presidents, etc.) the closer you can narrow down a list to
passwords you seriously want to check.

echo ‘BB’ | perl comboleetor.pl -c 2> /dev/null | wc
● blocks.txt file:

bob
08/16/1930
1930/08/16
carol
07/20/1938
1938/07/20
ted
08/29/1938
1938/08/29
alice
01/04/1937
1937/01/04

Lines Words Bytes
8102 8100 89366

echo ‘BPB’ | perl comboleetor.pl -c 2> /dev/null | wc
Lines Words Bytes
267459 275280 3217001

echo ‘BPBPP’ | perl comboleetor.pl -c 2> /dev/null | wc
Lines Words Bytes
289952744 307001240 4110760132

comboleetor.pl
Example 9: Tricks (cont.)

● blocks.txt file:
tin

can

● numbers.txt file:
%05.5x

10-20

comboleetor.pl can generate an enormous amount of
passwords even from a simple set of blocks and numbers.

echo ‘BNBPP’ | perl comboleetor.pl -c 2> /dev/null | wc

Lines Words Bytes
4937020 5077692 68962770

comboleetor.pl
Download the code and try it out!

Get the code as a gzipped tarball from:

https://www.jimby.name/techbits/recent/comboleetor/comboleetor_2.1.tgz

Send feedback to jpb@jimby.name

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

