
IPFW Primer

Abstract

ipfw(8) is a firewall application that comes standard with FreeBSD. This book provides an
introduction to IPFW and its capabilities. These capabilities are demonstrated using QEMU virtual
machines in real-world scenarios.

Content includes descriptions of the main features of ipfw(8) and lab examples on using IPFW as a
firewall or a network gateway.

Author: Jim Brown jpb@jimby.name

1

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html
mailto:jpb@jimby.name

Table of Contents
Acknowledgments . 5

Preface. 6

Shell Prompts . 6

Typographic Conventions . 6

Notes, Tips, Important Information, Warnings, and Examples . 6

1. Introduction. 8

1.1. Quick Start . 9

2. IPFW Operation . 10

2.1. Firewall Server Scripts . 11

2.2. External VM Scripts . 11

2.3. Loading IPFW . 11

2.4. Initial Firewall Setup . 12

3. IPFW Rules. 16

3.1. Practical Ruleset Development . 17

3.2. Dynamic Rules. 20

3.2.1. Notes on Rule Numbering. 21

3.3. Keywords . 26

3.3.1. Protocols . 26

3.3.2. Addresses . 28

3.3.3. Ports . 30

3.3.4. Prob . 32

3.3.5. Sets . 33

3.3.6. Tags. 39

3.3.7. Logging . 40

3.3.7.1. Method 1 – using ipfw0, the IPFW pseudointerface . 40

3.3.7.2. Method 2 – use syslogd . 40

3.3.7.3. Using Method 1 . 41

3.3.7.4. Using Method 2 . 42

3.3.8. Reset . 46

3.3.9. Tee . 47

3.3.10. Unreach. 47

3.3.11. Setdscp. 49

3.3.12. Skipto . 50

3.3.13. Divert . 53

3.3.14. Other Protocols . 58

3.3.15. Limit. 58

3.3.16. Call and Return . 60

3.3.17. Using uid and gid in rules. 63

2

3.4. Lookup Tables . 65

3.4.1. Creating Lookup Tables. 66

3.4.2. Using Tables in Rules . 68

3.4.2.1. Understanding the Word tablearg . 68

3.4.2.2. More on flow tables . 73

3.5. Stream Control Transport Protocol (SCTP) . 75

3.5.1. SCTP Versions. 76

3.5.2. SCTP Protocol Operation . 76

3.5.3. Using the TSCTP Testing Tool on FreeBSD . 78

3.5.4. Downloading and Building usrsctp Programs . 81

3.5.5. Encapsulated Echo Server and Client with IPFW . 81

4. IPFW Dummynet and Traffic Shaping . 84

4.1. Measuring Default Throughput. 85

4.2. IPFW Commands for Dummynet . 87

4.2.1. Simple Pipe Configuration . 87

4.2.2. Simple Pipe and Queue Configuration. 93

4.2.3. Relationships . 101

4.2.4. Dynamic Pipes . 101

4.2.5. Other Pipe and Queue Commands . 105

4.3. Adding Additional Virtual Machines . 106

5. ipfw NAT . 108

5.1. General Procedures for Working NAT Examples . 108

5.2. Setting Up for Simple NAT . 108

5.3. Setting Up for LSNAT . 116

5.3.1. Setting up LSNAT- One address (10.10.10.10). 119

5.3.2. Engaging Multiple Hosts With LSNAT . 121

6. IPv6 Network Address Translation (IPv6NAT) . 125

6.1. Stateful NAT64 (NAT64LSN) With DNS64 . 126

6.1.1. Setting Up for NAT64 / DNS64 . 127

6.1.2. Setting Up the dnshost VM . 129

6.1.3. Setting Up for Stateless NAT64 - NAT64STL . 133

6.2. 464XLAT . 135

7. Other Keywords . 144

7.1. abort / abort6. 144

7.2. mark / setmark . 144

7.3. NPTv6 . 146

7.3.1. NPTv6 Setup . 147

7.3.2. NPTv6 Testing . 148

7.4. ipttl. 149

7.4.1. ipttl Setup . 149

7.4.2. ipttl Testing. 150

3

7.5. tcpdatalen. 152

7.6. verrevpath / versrcreach / antispoof . 153

7.7. jail. 157

7.7.1. Host-based Jail Networking . 158

7.7.2. Virtual Network (VNET) Jail Networking . 161

Appendix A: Appendix A: QEMU Setup. 166

A.1. QEMU and VM Installation Process . 167

A.1.1. Disabling Syslog Messages to the Console in the Virtual Machines 170

A.1.2. Adding and Managing Serial Console Access to the VMs . 171

A.2. Using mkbr.sh for Bridge and Tap Setup . 174

Appendix B: Appendix B: Scripts and Code for QEMU Lab . 177

Appendix C: Appendix C: Networking References . 223

Appendix D: Appendix D. Managing Serial Terminals with tmux and screen 225

D.1. Using tmux(1) for Managing Serial Terminals . 225

D.2. Using screen(1) for Managing Serial Terminals . 226

Appendix E: Appendix E: DNS Server Configuration. 228

Index . 238

4

Acknowledgments
Thanks to the FreeBSD developers who added and maintain IPFW.

Also, thanks to those who took the time to read early drafts of this document and offered many
valuable comments and criticisms.

Attributions

Artwork from the following sources was used in preparing this book:

• Stylized nginx logo

Original image: NGINX Logo

Obtained from Wikimedia https://en.wikipedia.org/wiki/Nginx#/media/File:Nginx_logo.svg. Image is
listed as in the Public Domain.

The image was converted to .PNG and also to .BMP formats for use in this book and accompanying
code. Conversions were accomplished via ImageMagick’s convert program.

• Stylized bind 9 logo

Original image: BIND 9’s New Logo

Obtained from https://www.isc.org/blogs/bind-9s-new-logo/

Logo used with permission from Internet Systems Consortium (ISC).

The image was converted to .PNG and also to .BMP formats for use in this book and accompanying
code. Conversions were accomplished via ImageMagick’s convert program.

• Stylized IPv6 logo

Original image: World IPv6 Launch Logo

Obtained from Wikipedia: https://commons.wikimedia.org/wiki/File:World_IPv6_launch_logo.svg
Original CC 3.0 license: https://creativecommons.org/licenses/by/3.0/deed.en Updated CC 4.0 license:
https://creativecommons.org/licenses/by/4.0/deed.en

The image was converted to .PNG and also to .BMP formats for use in this book and accompanying
code. Conversions were accomplished via ImageMagick’s convert program.

Use of the above artwork does not imply endorsement of any opinions expressed in this book.

All other artwork is original artwork by the author.

5

https://en.wikipedia.org/wiki/Nginx#/media/File:Nginx_logo.svg
https://en.wikipedia.org/wiki/Nginx#/media/File:Nginx_logo.svg
https://www.isc.org/blogs/bind-9s-new-logo/
https://www.isc.org/blogs/bind-9s-new-logo/
https://www.worldipv6launch.org/wp-content/themes/ipv6/downloads/World_IPv6_launch_logo_256.png
https://commons.wikimedia.org/wiki/File:World_IPv6_launch_logo.svg
https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Preface
This page describes the conventions used in this book.

Shell Prompts
This table shows the default system prompt and superuser prompt. The examples use these
prompts to indicate which type of user is running the example.

User Prompt

Normal user %

root #

Typographic Conventions
This table shows various typographic conventions used throughout the text.

Meaning Examples

Data, sysctls, things to note. 1234, net.inet.ip.forwarding, em0

The names of files. Edit .login.

On-screen computer output.
Output highlighting. You have mail.

Read it very closely .

What the user types, contrasted
with on-screen computer
output.

ipfw add 100 check-state
00100 check-state :default

Manual page references. Use su(1) to change user identity.

Emphasis levels Emphasis. Stronger emphasis. Strongest emphasis.

Environment variables. $HOME is set to the user’s home directory.

Notes, Tips, Important Information, Warnings, and
Examples
Notes, warnings, and examples appear within the text.


Notes are represented like this, and contain information to take note of, as it may
affect what the user does.


Tips are represented like this, and contain information helpful to the user, such as
showing an easier way to do something.

6

https://man.freebsd.org/cgi/man.cgi?query=su&sektion=1&format=html


Important information is represented like this. Typically, these show extra steps
the user may need to take.



Warnings are represented like this, and contain information warning about
possible damage if the instructions are not followed. This damage may be physical,
to the hardware or the user, or it may be non-physical, such as the inadvertent
deletion of important files.

Example 1. A Sample Example

Examples are represented like this, and typically contain examples showing a walkthrough, or
the results of a particular action.

7

Chapter 1. Introduction
This book is about one of the native firewalls included with FreeBSD, ipfw(8) - the Internet Protocol
FireWall. ipfw is designed to operate on a FreeBSD host with multiple network interfaces, to filter
out unwanted traffic and pass through desired traffic. It does this based on a collection of rules
(numbered, text based statements) that are entered into the system from the command line. This
usage model is different from many other firewall products that employ Graphical User Interfaces
(GUIs), or separate control programs. All ipfw statements are entered into the user shell, typically
by a user with root privileges or access to root privilege by means of programs that elevate normal
user privileges such as sudo(8) or doas(1).

ipfw reads network traffic from the interfaces it knows about and processes them inside the
FreeBSD kernel. ipfw itself is a kernel module that can be either compiled into the kernel or loaded
at run time. It includes a number of other kernel modules (ipfw_nat, ipfw_nptv6, etc.) many of
which are discussed in this book.

A bird’s-eye view of ipfw operation notes that:

1. Rules are organized into a sorted list based on a rule number

2. Packets entering the kernel from a network interface or leaving the kernel via a network
interface are checked against the ruleset

3. Rules are checked one by one and the first rule that matches the packet characteristics wins -
that is, ipfw accepts the packet for processing - allowing transit through the firewall, denying
transit, updating a counter, or moving the packet into userspace for specialized processing.

The book makes frequent reference to the ipfw(8) manual page and the reader is advised to become
familiar with the manual page alongside this book. There is also a section on ipfw in the FreeBSD
Handbook Page on IPFW. The intent with this book is to provide examples and informative
material beyond the manual page and handbook to increase understanding and usage of ipfw.

Throughout this book are many examples of using ipfw with virtual machines to simulate actual
hardware. These examples were developed with QEMU version 9.2.0. It is, of course, entirely
possible to perform all the examples in this book with real hardware. QEMU provides a way to
perform the examples without spending any money for hardware. In either case, some setup is
required.



Note that QEMU command syntax with some of the examples may have changed
slightly by the time this book becomes available. Use the latest QEMU release
where possible, and check the QEMU documentation if the examples in this book
do not work correctly.

Also used are a number of scripts that allow easy if_bridge(4) and tap(4) setup, virtual machine
setup, and data transfer from external VMs to or through a firewall VM. In the early examples, data
transfer is accomplished with the netcat program, specifically the version distributed with the
nmap package (www.nmap.org). This version, ncat(1), has the best coverage of features that are
used throughout the book. A familiarity with the man page for ncat(1) is helpful, but not required.

All scripts used in this book are found in Appendix B and published under the BSD 3-clause license.

8

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=sudo&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=doas&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html
https://docs.freebsd.org/en/books/handbook/firewalls/#firewalls-ipfw
https://docs.freebsd.org/en/books/handbook/firewalls/#firewalls-ipfw
https://www.qemu.org
https://man.freebsd.org/cgi/man.cgi?query=if_bridge&sektion=4&format=html
https://man.freebsd.org/cgi/man.cgi?query=tap&sektion=4&format=html
https://www.nmap.org
https://man.freebsd.org/cgi/man.cgi?query=ncat&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ncat&sektion=1&format=html

The scripts are also available on the GitHub IPFW Primer page.

When copy/pasting examples, be aware that some desktop copy/paste functions add an extra space
(or multiple spaces) to the end of a line, messing up the Unix continuation character convention ' …
\' at the end of a line. Ensure that the paste function does not introduce extra spaces at the end of
the line.



The examples in this book involve passing data between interfaces on the host
system. A running firewall on the host such as pf, ipfw, or ipfilter (also known as
ipf) may interfere with data transfer, so ensure that any host system firewall is
disabled. In addition, take any necessary steps to ensure that this does not
compromise the security of the host.

1.1. Quick Start
Instructions for setting up all virtual machines (VMs) are found in Appendix A.

In general you will need the following:

• Intel®/AMD® machine with a 64-bit processor. Any machine manufactured to recent Microsoft
Windows® specifications should work. Processor speed will determine how responsive the
virtual machines appear, so the faster, the better.

• At minimum, 8GB RAM. Each virtual machine is configured to use 1GB and for the first half of
the book, only four VMs are used at the same time. In later chapters, the jail1 VM, will require
more memory (8GB).

• At least 50GB of free disk space to install all virtual machines. Each virtual machine uses 4GB
and the jail1 VM uses 12GB.

For the first half of this book, only four virtual machines are necessary - the firewall VM, and the
internal, external1 and external2 VMs.

Additional detail, along with setup instructions for all virtual machines, is provided in Appendix A.

9

https://github.com/jimmyb-gh/ipfw-primer

Chapter 2. IPFW Operation
So far, the initial lab setup should be that shown in the figure below except for IP addressing. All
the examples in this book use "Special Use Addresses" for both IPv4 and IPv6. Address references
used are described here for IPv4 Addresses (RFC 5737) and here for IPv6 Addresses (RFC 3849).

Configure both VMs to use the addresses shown in the figure below. Once these addresses are in
place on the VMs, it is unlikely that the VMs will be able to access sites on the Internet. The
203.0.113.0/24 network is considered non-routable by Internet service providers and major telecom
carriers on the Internet. However, this does not really matter, since all the communications for this
book are local to the VMs running on the FreeBSD host. Bottom line - if the VMs need to access the
Internet, leave them on DHCP, but for the examples in this book, use manual addressing as shown
in the figure below.



An easy, efficient way to rapidly change IP addresses is to edit /etc/rc.conf and
modify the address lines for the individual interfaces. After saving the file, run
service netif restart to restart the interfaces with the new addresses. Check and
reset the default route if needed.

Figure 1. external1, and firewall VMs With Special Use Addresses

Setup instructions for the example:

% cd ~/ipfw-primer/ipfw/HOST_SCRIPTS
% sudo /bin/sh mkbr.sh reset bridge0 tap0 tap1
% /bin/sh runvm.sh firewall external1

10

https://www.rfc-editor.org/rfc/rfc5737.html
https://www.rfc-editor.org/rfc/rfc3849.html

2.1. Firewall Server Scripts
To demonstrate the firewall capabilities of ipfw, the firewall runs one of four basic scripts. Recall
that these are located in /root/bin:

• tserv.sh (userv.sh): Script that opens one TCP (UDP) port and listens for incoming traffic.

• tserv3.sh (userv3.sh): Script that opens 3 TCP (UDP) ports and listens for incoming traffic.

These scripts will listen for an incoming connection and print whatever is sent over during the
connection. When the connection is closed, the script will continue to listen for the next connection.

These script provide the basic mechanism for receiving a TCP or UDP connection. Once ipfw is
running and populated with a ruleset, the effect each rule has on a connection can be shown.

2.2. External VM Scripts
Likewise, there are other basic scripts the external1 (and later, external2 and external3) VMs use
for initiating or establishing communications with or through the firewall VM. The TCP and UDP
versions perform similarly:

• tcon.sh (ucon.sh): Connect via TCP (or UDP). This script takes a single argument, a port number
to use for the connection. The external VM host can change the port number at each prompt. If
there is no script listening on the port on the firewall, the script will indicate a "connection
refused" or timeout error.

• tconr.sh (uconr.sh): Connection takes a random port number and a sleep value. The script
randomly selects one of three ports for its connection in a loop, controlled by the sleep value. If
there is a listener on the firewall active on the port, the connection succeeds - otherwise the
connection is refused.

• tcont.sh (ucont.sh): Connection takes a port number and sleep value. The communication uses
the same port in a loop, controlled by the sleep value.

These are simple scripts, but they allow for independent activity by the external VMs, while the
firewall VM admin creates and tests ipfw rulesets. Most of the examples in the first part of this
book can be done with just these scripts, so it is a good idea to become familiar with their operation.
Later scripts will use hping3(8) and iperf3(1), versatile tools used in network analysis.

By default, the external VMs and firewall VM scripts work on ports 5656, 5657, and 5658. The
randomized communication scripts also utilize port 5659, but in most cases, since no services are
listening on that port on the firewall VM, the connection fails.

It is important to understanding the underlying network activity. If Internet protocols, network
traffic, monitoring, and similar topics are unfamiliar, there are a number of excellent books, white
papers, and tutorials, many free over the Internet. Check Appendix C for a modest selection.

2.3. Loading IPFW
ipfw can be built into the FreeBSD kernel directly, or it can be loaded as a kernel module. The

11

https://man.freebsd.org/cgi/man.cgi?query=hping3&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=iperf3&sektion=1&format=html

ipfw.ko loadable kernel module is used for most of the examples in this book. Load ipfw as root
with the command:

kldload ipfw
ipfw2 (+ipv6) initialized, divert loadable, nat loadable, default to deny, logging
disabled

Notice the kernel display output - “ipfw2 (+ipv6) initialized, divert loadable, nat loadable, default to
deny, logging disabled”. This gives a quick summary of this host’s ipfw capabilities. The most
important to note is "default to deny" which indicates that, by default, the firewall has an immutable
rule located at the end of the ruleset that denies all Internet Protocol (IP) traffic. This rule depends
on how the kernel was configured when it was built. By default it is "default to deny". However,
when working on a FreeBSD system where its provenance is unknown, use the ipfw list command
to make sure:

ipfw list
65535 deny ip from any to any
#

Note that this does not mean it denies all network traffic, only traffic that is based on the Internet
Protocol (RFC 791), and all of its derivatives (TCP, UDP, ICMP, etc). If a hacker had the capability to
send and receive non-IP based traffic they could possibly still send and receive it. The firewall
administrator would need special rules to deny all traffic, similar to the example later in this book.

To begin the next section, start with the ipfw firewall unloaded:

kldunload ipfw
IP firewall unloaded
#



Unloading (kldunload ipfw) and loading (kldload ipfw) the ipfw kernel module is
a handy way of completely re-initializing ipfw. This removes all rules, sets,
queues, pipes, and other ipfw objects. See kldload(8), kldunload(8), and kldstat(8)
for details.

2.4. Initial Firewall Setup
This section introduces the operation of the scripts described above and demonstrates simple traffic
filtering.

In the first example, the firewall host runs tserv.sh (in /root/bin) which opens TCP port 5656.

12

https://man.freebsd.org/cgi/man.cgi?query=kldload&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=kldunload&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=kldstat&sektion=8&format=html

Figure 2. Simple Transmit with No ipfw In Place

The external1 VM runs tcon.sh, which repetitively opens a TCP connection and sends data to the
firewall VM. Since there is no firewall in place, all TCP connections succeed.

On the host machine, it is possible to run tcpdump(1) on the bridge0 device to see the traffic in real
time. Shown below is one successful transfer, i.e there are no firewall rules preventing the
connection.

It follows the basic TCP connection sequence: 3-way handshake setup, send data, and close the
connection:

13

https://man.freebsd.org/cgi/man.cgi?query=tcpdump&sektion=1&format=html

Figure 3. tcpdump(1) of Bridge Traffic During Transfer

Now load the ipfw firewall on the firewall VM and retry the communication.

kldload ipfw
ipfw2 (+ipv6) initialized, divert loadable, nat loadable, default to deny, logging
disabled
#
ipfw list
65535 deny ip from any to any
#

14

Figure 4. Simple Transmit with Default Rule In Place

No communications were successful - the connections time out because the ipfw firewall has
denied traffic with the default deny rule as described above. The external1 VM host sends SYN
packets to start the connection, but they never reach the firewall VM’s TCP service on port 5656.
The TCP 3-way handshake is never completed.

These same techniques are used throughout this book. They show how communications and data
transfer operate and how firewall rules affect those communications.

15

Chapter 3. IPFW Rules
The manual page for ipfw(8) lists the entire command syntax including those for general ruleset
construction. In this book, basic traffic rules are discussed first and more complex capabilities are
discussed in later sections. Each section builds on the previous sections so the reader will be better
positioned to understand the advanced material later in the book.

Almost all the examples in this section can be run on the architecture used in the previous chapter,
specifically that of Chapter 2, Figure 1. See that section for guidance on setting things back up.
Ensure IPv4 addressing is set up as shown in Chapter 2, Figure 1.

ipfw rules have the general format of:

ipfw command [rule_number] [set set_number] [prob match_probability] action [log
[logamount number]] [altq queue] [{tag | untag} number] body

Bolded keywords indicate literal option text that is added to a rule. Italicized keywords indicate a
block of additional content that is rule dependent.

The rule body has its own syntax format:

[proto from src to dst] [options]

Here is an example with basic syntax for an entire rule:

Figure 5. Description of ipfw Rule Syntax

1. The FreeBSD ipfw shell command

2. The ipfw rule command (add)

3. The optional rule number (1000)

4. An optional set keyword and value (set 2)

5. An optional probability keyword and value (prob 0.5)

6. The rule action keyword (deny)

7. An optional log keyword (log)

8. An optional logamount keyword and value (logamount 50000)

9. An optional altq keyword and value (altq red)

10. An optional tag keyword and value (tag 27)

11. The body of the rule starting with a protocol keyword (tcp)

12. A source direction keyword (from)

16

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

13. A source address (any internet address)

14. A destination keyword (to)

15. A destination address (any interface on the local system)

16. A destination port number (8081)

17. A comment. Note that comments are only valid in the match pattern section of a rule.

The example in the above figure would not actually load - there is no altq(9) queue named red set
up yet - but it does show the overall format of how rules are constructed. This example also shows
the use of the Unix line continuation convention using a single backslash at the end of the line (with
no following spaces) to continue to the next line.

The essence of ipfw rule processing is found when patterns that are defined in the rule body are
matched on incoming or outgoing packets, one at a time and the action keywords are processed in
turn.

In other words, ipfw directs traffic flow by first matching each incoming or outgoing packet against
patterns supplied within the body of the rule. The patterns include protocols (tcp, udp, igmp, eigrp,
etc.), source and destination addresses and ports, and options that apply to the context of the traffic.

3.1. Practical Ruleset Development
This section concentrates on the basic commands and actions.

The basic command keywords are these:

• enable/disable - commands to disable or enable ipfw rule processing. The kernel module
remains loaded - the effect is to suspend or resume rule processing. This is important to
understand early as these commands function like an 'on/off' switch to firewall operation.

• add - adds a rule.

• delete - deletes a rule. The rule number must be specified - for example, ipfw delete 1000.

• list - lists the contents of the current ruleset. Even if there have been no rules added, the
list command should always list out the default rule, by default, 65535 deny ip from any to
any.

• show - similar to the list command, show includes counters for each rule.

• flush - delete all the rules in the ruleset except for rules in set 31. (Sets are described later
in this Chapter.) Since this is a command with enormous impact, a Yes/No prompt is issued
before continuing.

The basic traffic flow action keywords are these:

• allow | accept | pass | permit - direct ipfw to allow a packet through this rule should the

17

https://man.freebsd.org/cgi/man.cgi?query=altq&sektion=9&format=html

packet match the rule body.

• count - increment a counter applied to a rule. No other processing is applied to the packet.

• deny | drop - do not allow a packet to pass through this rule should the packet match the
rule body.

• check-state [:flowname | :any] - check if a dynamic rule already exists.

• reset - resets Network Address Translation tables.

The ipfw(8) man page has the complete list of action keywords, and describes each in detail.

This text also examines these keywords in the rules section:

• prob - assign a probability (a value between 0 and 1) to the rule action

• set - use a collection of rules

• tag and untag - apply an internal tag to a packet affected by the rule

• log and logamount - log keywords

• reset - send a TCP reset on a connection

• tee - cause packets to flow in multiple ways

• unreach - specify an action if a packet’s destination is unreachable

• setdscp - set DiffServe parameters for outbound packets

• skipto - jump around a ruleset

• divert - pull packets into userspace for programmatic purposes

• limit - limit the number of active connections

• call and return - another way to jump around a ruleset

• lookup tables and the lookup keyword - value selection keywords

Most action keywords, such as allow or deny, determine traffic flow. It is important to become
familiar with these actions as they will be used in almost every rule. In addition, carefully note
what ipfw does after it matches a packet and applies an action - it either terminates its search, or it
goes on to the next rule.

Other action keywords perform an activity that does not have any impact on traffic flow. For
example, the count action simply updates counters that apply to a rule. It has no effect on traffic
flow and ipfw continues processing with the next rule.

Recall that ipfw is a command line program that uses all the words on the command line as
parameters. In developing rules, remember that certain constructs such as braces ({,}), brackets ([,])
and even parentheses themselves are all recognized by the shell and must be escaped with a

18

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

backslash '\'. The ipfw(8) man page has additional caveats on rule syntax.

To begin, shutdown all VMs and create the network architecture shown in Chapter 2, Figure 1,
including the required IP addresses.

/bin/sh mkbr.sh reset bridge0 tap0 tap1 intf <--- use the appropriate interface on
the FreeBSD host

Start up the firewall VM, external1 VM, and the tmux multiplexer for use with both VMs:

% sudo /bin/sh firewall.sh
% sudo /bin/sh external.sh
% /bin/sh swim.sh

On the firewall VM, load the ipfw.ko kernel module and start the tserv.sh service to listen for
incoming connections.

Below is the smallest possible ruleset that permits the external1 VM to make a TCP connection to
the service running on the firewall VM.

ipfw add 100 check-state
00100 check-state :default
ipfw add 1000 allow tcp from any to me 5656 in via em0 setup keep-state
01000 allow tcp from any to me 5656 in via em0 setup keep-state :default

Test this ruleset immediately by again running sh tserv.sh on the firewall VM and sh tcon.sh 5656
script on the external1 VM as described in the previous chapter. The connection should succeed.

Rule 100 contains the check-state option. It checks to see if a connection is already established and
a dynamic rule is in place. If so, any additional packets matching the dynamic rule would be passed.
"Dynamic rules" are discussed shortly.

Rule 1000 contains the add command. This command inserts the requested rule into the ipfw
ruleset where it can process packets against the specified actions in the rule body. The rule itself
contains the allow keyword, which permits traffic to pass.

The rule also uses the setup and keep-state options to create a dynamic rule for the connection.

In a stateful firewall like ipfw, once a connection from an external host to an internal host is
established, the firewall creates a dynamic rule permitting continued traffic along this path until
the connection is reset.

Note that without the check-state keyword, no check for a dynamic rule is performed and without
the keep-state, no creation of a dynamic rule is performed.

Consider this ruleset with just a single rule:

19

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

ipfw add 1000 allow tcp from any to me 5656

This rule looks like it should work, but it does not. A TCP packet entering ipfw has no pre-existing
dynamic rule. Further, the rule does not create one. And, because there is no corresponding rule for
outbound traffic, no TCP 3-way handshake is ever completed. Note that a SYN packet is received by
the firewall, but not by the destination service.

By adding the rule:

ipfw add 2000 allow tcp from me to any

the TCP 3-way handshake is allowed to complete and the data is sent from the external1 VM host to
the tserv.sh process running on the firewall VM.

While this method works, it uses two rules instead of one. In this case, the better solution is to use
the setup, keep-state, and check-state options early in the ruleset as shown in the original
example in this section.

3.2. Dynamic Rules
So, what exactly are "dynamic rules"? The scripts being used close the TCP connection each time, so
the dynamic rules are short lived, and cannot be easily examined.

To see dynamic rules in action, unload and reload the ipfw kernel module, and re-enter the original
ruleset from the previous section.

Then manually set up an ncat listener on the firewall VM and send data with an ncat sender on the
external1 VM:

On the firewall VM, start up the listener service manually:

ncat -l 203.0.113.50 5656

Then, on the external1 VM, use ncat to connect to the service on the firewall and type a message:

ncat 203.0.113.50 5656
hello there
^C

The message should appear on the console of the firewall VM. If it does not, ensure that the
original rule from the previous section is active.

20

Figure 6. Manually Creating Traffic to Examine Dynamic Rules

The above figure shows the connection is open between the external1 and firewall VMs.

While the connection is still open, run the following command on the firewall VM serial console:

Figure 7. Viewing Dynamic Rules

Output is similar to that in the above figure.

The -d option displays dynamic rules in addition to regular rules. The -D option displays just
dynamic rules.

3.2.1. Notes on Rule Numbering

Each rule is assigned a rule number, even if one is not specified. The details for rule number
handing are found in the ipfw(8) man page. Note that rules are assigned numbers in increments
specified by the sysctl net.inet.ip.fw.autoinc_step.

sysctl net.inet.ip.fw.autoinc_step
net.inet.ip.fw.autoinc_step: 100

Restart with a simple check-state rule and note that ipfw has assigned a number associated with
the increment sysctl shown above:

Flush the ipfw ruleset first.

ipfw -q flush
ipfw add check-state
00000 check-state :default

ipfw list
00100 check-state :default
65535 deny ip from any to any00000 check-state :default

ipfw has automatically assigned the rule number 100. While it can be convenient to have ipfw add
a rule number automatically, it is best to always assign rule numbers yourself. This ensures a
deliberate decision was made to put a rule in a specific place within the ruleset. With large rulesets
this is critical. A rule automatically assigned by ipfw can be placed where it can have an

21

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

unexpected effect.

Consider this ruleset:

ipfw list
00300 deny ip from any to 200.200.200.200
00400 deny ip from any to 200.200.200.201
00500 deny ip from any to 200.200.200.202
00600 deny ip from any to 200.200.200.203
00700 deny ip from any to 200.200.200.204
00800 deny ip from any to 200.200.200.205
00800 deny ip from any to 200.200.200.206
65535 deny ip from any to any

Having forgotten to add the check-state rule the firewall admin quickly adds it:

ipfw add check-state
00000 check-state :default

resulting in the unintentional placement:

ipfw list
00300 deny ip from any to 200.200.200.200
00400 deny ip from any to 200.200.200.200
00500 deny ip from any to 200.200.200.200
00600 deny ip from any to 200.200.200.200
00700 deny ip from any to 200.200.200.200
00800 deny ip from any to 200.200.200.200
00800 deny ip from any to 200.200.200.200
00900 check-state :default
65535 deny ip from any to any

Also, ipfw allows rules with the same rule number to be added to the ruleset, and it will keep track
of the rules in the order they were entered. This is easy to forget when manually entering rules
from the command line and using command line editing to change something simple like the last
byte of an IP address.

It is important to remember that all such rules are affected by commands that operate on one or
more lines, such as the delete command:

ipfw add 100 check-state
00100 check-state :default
ipfw add 1000 allow tcp from 203.0.113.10 to me 5656 setup keep-state
01000 allow tcp from 203.0.113.10 to me 5656 keep-state :default
ipfw add 1000 allow tcp from 203.0.113.20 to me 5656 setup keep-state
01000 allow tcp from 203.0.113.20 to me 5656 keep-state :default
ipfw add 1000 allow tcp from 203.0.113.30 to me 5656 setup keep-state

22

01000 allow tcp from 203.0.113.30 to me 5656 keep-state :default
ipfw add 1000 allow tcp from 203.0.113.40 to me 5656 setup keep-state
01000 allow tcp from 203.0.113.40 to me 5656 keep-state :default
#
ipfw list
00100 check-state :default
01000 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
01000 allow tcp from 203.0.113.20 to me 5656 setup keep-state :default
01000 allow tcp from 203.0.113.30 to me 5656 setup keep-state :default
01000 allow tcp from 203.0.113.40 to me 5656 setup keep-state :default
65535 deny ip from any to any
#
ipfw delete 1000
#
ipfw list
00100 check-state :default
65535 deny ip from any to any

The delete command can also process both ranges and lists of rules.

Consider the following ruleset:

ipfw list
00100 check-state :default
01000 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
01100 allow tcp from 203.0.113.11 to me 5656 setup keep-state :default
01200 allow tcp from 203.0.113.12 to me 5656 setup keep-state :default
01300 allow tcp from 203.0.113.13 to me 5656 setup keep-state :default
02000 allow tcp from 203.0.113.20 to me 5656 setup keep-state :default
02100 allow tcp from 203.0.113.21 to me 5656 setup keep-state :default
02200 allow tcp from 203.0.113.22 to me 5656 setup keep-state :default
02300 allow tcp from 203.0.113.23 to me 5656 setup keep-state :default
03000 allow tcp from 203.0.113.30 to me 5656 setup keep-state :default
03100 allow tcp from 203.0.113.31 to me 5656 setup keep-state :default
03200 allow tcp from 203.0.113.32 to me 5656 setup keep-state :default
03300 allow tcp from 203.0.113.33 to me 5656 setup keep-state :default
04000 allow tcp from 203.0.113.40 to me 5656 setup keep-state :default
04100 allow tcp from 203.0.113.41 to me 5656 setup keep-state :default
04200 allow tcp from 203.0.113.42 to me 5656 setup keep-state :default
04300 allow tcp from 203.0.113.43 to me 5656 setup keep-state :default
04400 allow tcp from 203.0.113.44 to me 5656 setup keep-state :default
04500 allow tcp from 203.0.113.45 to me 5656 setup keep-state :default
04600 allow tcp from 203.0.113.46 to me 5656 setup keep-state :default
04700 allow tcp from 203.0.113.47 to me 5656 setup keep-state :default
04800 allow tcp from 203.0.113.48 to me 5656 setup keep-state :default
04900 allow tcp from 203.0.113.49 to me 5656 setup keep-state :default
65535 deny ip from any to any

A range is specified by two number separated by a dash: for example 5000-7350; whereas a list is a

23

space-separated collection of numbers on the command line.

The following command deletes rules from 1000 to 2999 and certain rules between 4000 and 5000:

ipfw delete 1000-2999 4100 4300 4500 4700 4900
#
ipfw list
00100 check-state :default
03000 allow tcp from 203.0.113.30 to me 5656 keep-state :default
03100 allow tcp from 203.0.113.31 to me 5656 keep-state :default
03200 allow tcp from 203.0.113.32 to me 5656 keep-state :default
03300 allow tcp from 203.0.113.33 to me 5656 keep-state :default
04000 allow tcp from 203.0.113.40 to me 5656 keep-state :default
04200 allow tcp from 203.0.113.42 to me 5656 keep-state :default
04400 allow tcp from 203.0.113.44 to me 5656 keep-state :default
04600 allow tcp from 203.0.113.46 to me 5656 keep-state :default
04800 allow tcp from 203.0.113.48 to me 5656 keep-state :default
65535 deny ip from any to any

Note that the delete command will operate on comma separated values, but the delete command
will only remove the first value in a comma separated list, not the entire list. The command does
not throw an error, but it does not delete all the lines requested.

ipfw delete 3100,3200,3300
echo $?
0 <--- No error found with the previous command.
#
ipfw list
00100 check-state :default
03000 allow tcp from 203.0.113.30 to me 5656 keep-state :default
03200 allow tcp from 203.0.113.32 to me 5656 keep-state :default
03300 allow tcp from 203.0.113.33 to me 5656 keep-state :default
04000 allow tcp from 203.0.113.40 to me 5656 keep-state :default
04200 allow tcp from 203.0.113.42 to me 5656 keep-state :default
04400 allow tcp from 203.0.113.44 to me 5656 keep-state :default
04600 allow tcp from 203.0.113.46 to me 5656 keep-state :default
04800 allow tcp from 203.0.113.48 to me 5656 keep-state :default
65535 deny ip from any to any

The show command is similar to the list command but it also includes a packet count and byte
count for each rule.

Stop any existing scripts on the firewall VM and run sh userv3.sh. Then create the following
ruleset on the firewall VM:

ipfw -q flush
#
ipfw add 100 check-state

24

00100 check-state :default
ipfw add 1000 allow udp from 203.0.113.10 to me 5656
01000 allow udp from 203.0.113.10 to me 5656
ipfw add 2000 allow udp from 203.0.113.10 to me 5657
02000 allow udp from 203.0.113.10 to me 5657
ipfw add 3000 allow udp from 203.0.113.10 to me 5658
03000 allow udp from 203.0.113.10 to me 5658
ipfw add 4000 allow udp from 203.0.113.10 to me 5659
04000 allow udp from 203.0.113.10 to me 5659
#
ipfw list
00100 check-state :default
01000 allow udp from 203.0.113.10 to me 5656
02000 allow udp from 203.0.113.10 to me 5657
03000 allow udp from 203.0.113.10 to me 5658
04000 allow udp from 203.0.113.10 to me 5659
65535 deny ip from any to any

Then, on the external1 VM, run sh uconr.sh 5656 1 script to send packets to ports 5656, 5657, and
5658, randomly:

sh uconr.sh 5656 1
PORT1 = [5656]
SLEEPVAL = [1]
UDP packet from [203.0.113.10],[5656],[1]
UDP packet from [203.0.113.10],[5656],[2]
UDP packet from [203.0.113.10],[5658],[3]
UDP packet from [203.0.113.10],[5657],[4]
UDP packet from [203.0.113.10],[5659],[5]
UDP packet from [203.0.113.10],[5659],[6]
UDP packet from [203.0.113.10],[5659],[7]
UDP packet from [203.0.113.10],[5656],[8]
UDP packet from [203.0.113.10],[5658],[9]
UDP packet from [203.0.113.10],[5659],[10]
UDP packet from [203.0.113.10],[5658],[11]
UDP packet from [203.0.113.10],[5656],[12]
UDP packet from [203.0.113.10],[5656],[13]
UDP packet from [203.0.113.10],[5656],[14]
UDP packet from [203.0.113.10],[5659],[15]
UDP packet from [203.0.113.10],[5656],[16]
UDP packet from [203.0.113.10],[5657],[17]
UDP packet from [203.0.113.10],[5659],[18]
UDP packet from [203.0.113.10],[5659],[19]
UDP packet from [203.0.113.10],[5657],[20]
UDP packet from [203.0.113.10],[5659],[21]
^C

Running the ipfw show command outputs:

25

ipfw show
00100 0 0 check-state :default
01000 7 494 allow udp from 203.0.113.10 to me 5656
02000 3 212 allow udp from 203.0.113.10 to me 5657
03000 3 211 allow udp from 203.0.113.10 to me 5658
04000 8 565 allow udp from 203.0.113.10 to me 5659
65535 11 897 deny ip from any to any

The output shows the number of packets and the number of bytes processed by each rule, including
the default rule which may have processed many more packets.

This is a useful tool for debugging. Paired with the zero command which can clear counters with
precise rule selection, it can show what rules are still processing a rule match.

The zero command takes a space separated list of rules (similar to the delete command) to clear
counters. However, unlike the delete command, ranges (e.g 2000-3000) are not allowed.

ipfw zero 2000 3000
#
ipfw show
00100 0 0 check-state :default
01000 7 494 allow udp from 203.0.113.10 to me 5656
02000 0 0 allow udp from 203.0.113.10 to me 5657
03000 0 0 allow udp from 203.0.113.10 to me 5658
04000 8 565 allow udp from 203.0.113.10 to me 5659
65535 11 897 deny ip from any to any

Clearing all rule match counters can be done with ipfw zero with no parameters.

Clearing the default rule match counter can be done with ipfw zero 65535.

Counters are also a feature of rules that specify the log keyword. An example of this is shown below
when discussing the log and logamount keywords.

3.3. Keywords

3.3.1. Protocols

Protocols are those defined by IANA - the Internet Assigned Numbers Authority
(https://www.iana.org) and are included in Unix systems in /etc/protocols. This file identifies what
numbers are assigned to common (and some very obscure) protocols - ip (0), tcp (6), udp (17), icmp
(1), and many others.

Source and destination protocols can be the conventional IP or IPv6 addresses. However, the
ipfw(8) manual page has this more detailed explanation:

"The first part (proto from src to dst) is for backward compatibility with earlier versions of

26

https://www.iana.org/
https://www.iana.org/
https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

FreeBSD. In modern FreeBSD any match pattern (including MAC headers, IP protocols,
addresses and ports) can be specified in the options section."

The ipfw keywords for common protocols include:

ip4 | ipv4 Matches IPv4 packets.

ip6 | ipv6 Matches IPv6 packets.

ip | all Matches any IP packet.

The logical operator "or" can be use to combine multiple protocols where any one of them applies.
The "{" and "}" braces can be used to group "or" conditions (known as "or-blocks"). Only one level
of braces can be used. Braces must be escaped with a backslash '\' to prevent them from being
interpreted directly by the command line shell:

ipfw add 1100 deny \{ tcp or udp or eigrp or chaos \} from 1.2.3.4 to 5.6.7.8
01100 deny { tcp or udp or eigrp or chaos } from 1.2.3.4 to 5.6.7.8

Consider this ruleset in a shell script:

#!/bin/sh

ipfw add 5000 deny \{ icmp or ip or igmp or ggp or ipencap or st2 or tcp or cbt or egp or igp or bbn-
rcc or nvp or pup or argus or emcon or xnet or chaos or udp or mux or dcn or hmp or prm or xns-
idp or trunk-1 or trunk-2 or leaf-1 or leaf-2 or rdp or irtp or iso-tp4 or netblt or mfe-nsp or merit-inp
or dccp or 3pc or idpr or xtp or ddp or idpr-cmtp or tp++ or il or ipv6 or sdrp or ipv6-route or ipv6-
frag or idrp or rsvp or gre or dsr or bna or esp or ah or i-nlsp or swipe or narp or mobile or tlsp or
skip or ipv6-icmp or ipv6-nonxt or ipv6-opts or cftp or sat-expak or kryptolan or rvd or ippc or sat-
mon or visa or ipcv or cpnx or cphb or wsn or pvp or br-sat-mon or sun-nd or wb-mon or wb-expak
or iso-ip or vmtp or secure-vmtp or vines or ttp or nsfnet-igp or dgp or tcf or eigrp or ospf or sprite-
rpc or larp or mtp or ax.25 or ipip or micp or scc-sp or etherip or encap or gmtp or ifmp or pnni or
pim or aris or scps or qnx or a/n or ipcomp or snp or compaq-peer or ipx-in-ip or carp or pgm or
l2tp or ddx or iatp or stp or srp or uti or smp or sm or ptp or isis or fire or crtp or crudp or
sscopmce or iplt or sps or pipe or sctp or fc or rsvp-e2e-ignore or mobility-header or udplite or
mpls-in-ip or manet or hip or shim6 or wesp or rohc or pfsync or divert \} from any to me

exit

Note that the above file is shown as one very long line and does not use the Unix line continuation
convention.

This command will deny all traffic using all protocols defined in /etc/protocols. The above command
will complete successfully. However, due to a bug in the "or-block" parser, the rule cannot have the

27

"ip" protocol first. Swapping the first two protocols - icmp and ip - the command throws an error.

For example,

ipfw add 1000 deny \{ igmp or ip or eigrp \} from any to me

works Ok but

ipfw add 1000 deny \{ ip or igmp or eigrp \} from any to me
ipfw: invalid OR block

fails.

The use of the logical "and" operator in a protocol block is an error. A packet can be in only one
protocol at a time. However, the use of the logical "not" operator is permitted in front of a protocol
identifier:

ipfw add 1000 deny \{ icmp or not igmp \} from any to me

Careful consideration of all logical conditions is essential to correct operation of a ruleset.


In later versions of FreeBSD, the use of the protocol "or-block" is noted as
deprecated in ipfw(8) but the operation may still complete successfully until the
feature is removed completely.

3.3.2. Addresses

Source and destination addresses can be any of the following:

• IPv4 or IPv6 addresses

• any - matches any IP address.

• me - matches any IP address configured on an interface in the system.

Note that the interface does not have to have an IP or IPv6 address, nor does it have to be up or
even exist at the time the rule is entered. Thus, be aware that a rule with keyword me may affect
traffic on interfaces that are configured at a later time. Consider the following system interface list:

ifconfig -a
em0: flags=8863<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

options=481209b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,WOL_MAGIC,VLAN_HWFIL
TER,NOMAP>
 ether 02:49:50:46:57:41
 inet 203.0.113.50 netmask 0xffffff00 broadcast 203.0.113.255

28

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

 media: Ethernet autoselect (1000baseT <full-duplex>)
 status: active
 nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384
 options=680003<RXCSUM,TXCSUM,LINKSTATE,RXCSUM_IPV6,TXCSUM_IPV6>
 inet6 ::1 prefixlen 128
 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x3
 inet 127.0.0.1 netmask 0xff000000
 groups: lo

The following attempt to add a rule with a non-existent interface succeeds even though there is no
wlan0 interface defined:

ipfw add 1000 deny tcp from 1.2.4.4 to me via wlan0
01000 deny tcp from 1.2.4.4 to me via wlan0

• me6 - matches any IPv6 address similarly to the above me keyword.

• table(name[,value]) - matches any IPv4 or IPv6 address for an entry in the named table.

Tables are discussed below in Lookup Tables.

IPv4 and IPv6 addresses follow the usual conventions regarding address and mask or prefix length.
Addresses can also be grouped into a list, similar to the capability discussed for protocols above.

ipfw add 2000 allow tcp from \{ 2.3.4.5/32, 3.4.5.0/24, 10.0.0.0/8 \} to me

ipfw add 2000 allow tcp from \{ 2607:fcc0:0:35::dd/64, 2608:abcd:0:2300::9eac/64 \}
to me

However, IPv4 and IPv6 addresses cannot be mixed in the same list. Use two different rules
instead.

For sparse collections of addresses, consider the alternate form allowed by

addr-set: addr[/masklen]{list}

such as:

ipfw add 1000 allow tcp from 1.2.3.0/24\{128,9,35-45,7\} to me

In this form, lists and increasing ranges are allowed. ipfw will consolidate overlapping ranges, and

29

will reorder the list in the display to show increasing addresses from left to right. Note that spaces
are only allowed after commas between list elements, nowhere else.

This example does not work due to incorrect placement of spaces:

ipfw add 1000 allow tcp from 1.2.4.0/24\{ 128,9,25-45,7-25 \} to me
ipfw: missing ``to''

This example works by correcting where spaces occur on the command line.

ipfw add 1000 allow tcp from 1.2.4.0/24\{128,9,25-45,7-25\} to me
01000 allow tcp from 1.2.4.0/24{7-45,128} to me

As noted, ipfw will simplify, reorder, and display the list:

ipfw list
01000 allow tcp from 1.2.4.0/24{7-45,128} to me
65535 deny ip from any to any

Note that ranges must be defined as increasing. Also, as noted in ipfw(8), there is no support for
sets of IPv6 addresses.

3.3.3. Ports

Ports may be specified by number or by service name. Service names, also under the provenance of
IANA, are found in /etc/services on Unix systems.

Ports can be specified as individual items, lists, or ranges. Typically ports are used to determine a
destination service and so apply to the destination address (although specifying source ports is also
permitted):

ipfw add 1000 allow tcp from 1.2.3.4 to me daytime
01000 allow tcp from 1.2.3.4 to me 13

ipfw add 2000 allow tcp from 2.3.4.5 to me ssh, telnet, smtp
02000 allow tcp from 2.3.4.5 to me 22,23,25

ipfw add 3000 allow tcp from 3.4.5.6 to me auditd-domain
03000 allow tcp from 3.4.5.6 to me 48-53

This example uses source and destination ports.
ipfw add 4000 allow tcp from 7.8.9.10 3030 to me ssh
04000 allow tcp from 7.8.9.10 3030 to me 22

General Notes on Port Ranges

30

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html
https://www.iana.org/

1. A range such as that shown above (auditd-domain) may accidentally include ports not wanted. In
this case, ports tacacs (49), re-mail-ck (50), la-maint (51), and xns-time (52) would be
included. Therefore, always check actual port numbers when using named ranges for ports.

2. Some service names include the dash character '-' as part of the name, as in the point above. In
these cases a double backslash, is required, one for the shell and one for ipfw:

ipfw add 4000 allow tcp from 4.5.6.7 to me ftp, ftp\\-data
04000 allow tcp from 4.5.6.7 to me 21,20

3. Some applications require a range of source and destination ports in both directions. This is
easy to accomplish with ranges and a keep-state rule:

ipfw add 1000 allow tcp from 203.0.113.10 5200-5205 to me 5656-5658 keep-state
01000 allow tcp from 203.0.113.10 5200-5205 to me 5656-5658 keep-state :default
#
ipfw list
01000 allow tcp from 203.0.113.10 5200-5205 to me 5656-5658 keep-state :default
65535 deny ip from any to any

4. The syntactic sugar provided by the match keywords dst-port and src-port are both part of the
match section of the rule:

ipfw add 1000 allow tcp from 203.0.113.10 to me src-port 3030 dst-port 1010
01000 allow tcp from 203.0.113.10 3030 to me 1010

To test common ports in both directions, manually connect using ncat, setting up the source and
destination ports as needed:

ipfw -q flush
ipfw add 1000 allow tcp from 203.0.113.10 to me src-port 5200=5205 dst-port 5656-
5658 keep-state
01000 allow tcp from 203.0.113.10 5200-5205 to me 5656-5658 keep-state :default
ipfw list
01000 allow tcp from 203.0.113.10 5200-5205 to me 5656-5658 keep-state :default
65535 deny ip from any to any

Note: the transmission and reception lines have been aligned on each side.

31

Figure 8. Manually Testing Common Ports in Both Directions

Note that no connection was achieved when the destination port was out of bounds (5659) and
when the source port was out of bounds (5206).

3.3.4. Prob

The prob keyword is used to assign a chance, that is, a probability (a floating point value between 0
and 1), that an incoming packet will be matched. If the chance is successful, the corresponding rule
performs the required action. If the chance is not successful, the rule is not matched and rule
processing continues to the next rule.

To test this keyword, use "sh ucont.sh 5656 1" script on the external1 VM’s side to repeatedly send
a UDP packet to the firewall VM, who is listening on UDP port 5656. Using the prob keyword, set a
probability of .5 (a 50% chance) that the packet will be matched. The action is to let the packet pass
to the service, which just prints the contents of the packet.

As shown below, there were 24 out of 50 packets received, very close to 50% for such a small
sample:

ipfw -q flush
#
ipfw add 3000 prob 0.5 allow udp from any to me 5656
03000 prob 0.500000 allow udp from any to me 5656
#
ipfw list
03000 prob 0.500000 allow udp from any to me 5656
65535 deny ip from any to any
#
sh userv.sh 5656
PORT1 = [5656]
Starting UDP listener on [203.0.113.50],[5656]
UDP packet from [203.0.113.10],[5656],[5]
UDP packet from [203.0.113.10],[5656],[6]
UDP packet from [203.0.113.10],[5656],[7]

32

UDP packet from [203.0.113.10],[5656],[10]
UDP packet from [203.0.113.10],[5656],[11]
UDP packet from [203.0.113.10],[5656],[13]
UDP packet from [203.0.113.10],[5656],[14]
UDP packet from [203.0.113.10],[5656],[16]
UDP packet from [203.0.113.10],[5656],[19]
UDP packet from [203.0.113.10],[5656],[20]
UDP packet from [203.0.113.10],[5656],[22]
UDP packet from [203.0.113.10],[5656],[28]
UDP packet from [203.0.113.10],[5656],[29]
UDP packet from [203.0.113.10],[5656],[32]
UDP packet from [203.0.113.10],[5656],[33]
UDP packet from [203.0.113.10],[5656],[34]
UDP packet from [203.0.113.10],[5656],[35]
UDP packet from [203.0.113.10],[5656],[37]
UDP packet from [203.0.113.10],[5656],[38]
UDP packet from [203.0.113.10],[5656],[39]
UDP packet from [203.0.113.10],[5656],[41]
UDP packet from [203.0.113.10],[5656],[43]
UDP packet from [203.0.113.10],[5656],[45]
UDP packet from [203.0.113.10],[5656],[49]
^C#

3.3.5. Sets

Firewall rules can be grouped into different sets which can be switched atomically. Why use this
feature? Consider a datacenter with two sets of identical servers on separate networks. One set
must be taken down for maintenance. But first, traffic must be transferred to the other set of
servers. Using sets is a practical solution for this problem.

Sets are useful, but they do come with some caveats which are described throughout this section.

The default set is set 0. To begin, create rules in set 0 and set 1 with slight differences between the
two. Note that this example also shows the use of the ipfw comment feature - allowing comments
on a per-rule basis.

ipfw -q flush
#
ipfw add 1000 set 0 check-state
01000 check-state :default
#
ipfw add 1100 set 0 allow tcp from any to me 5656 setup keep-state // 5656 only
01100 allow tcp from any to me 5656 setup keep-state :default // 5656 only
#
ipfw add 2000 set 1 check-state
02000 check-state :default
#
ipfw add 2100 set 1 allow tcp from any to me 5657 setup keep-state // 5657 only
02100 allow tcp from any to me 5657 setup keep-state :default // 5657 only

33

#
ipfw set show
enable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30

The above ipfw set show command lists all enabled sets, here showing both 0 and 1 as enabled.

From the external1 VM, commence communications using the tcon.sh script as shown below. The
first two communications ([1], [2]) are to port 5656, the next two communications are to port 5657
([3],[4]). The firewall host shows all four communications received:

Figure 9. Use of Sets

Right before communication 5, the firewall host admin disabled set 0, (# ipfw set disable 0)
effectively blocking access to port 5656. Disabling set 0, effectively removes the rules for port 5656
and so the communications [5] and [6] fail. The external1 VM goes back to port 5657 for
communications [7] and [8], which are successful.

Notice that when listing the firewall ruleset with just ipfw list, only the sets that are enabled
actually show up. To make sure which sets are enabled / disabled, use the -S flag on the ipfw
command as shown below.

ipfw set enable 0
#
ipfw set show
enable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30
#
ipfw -S list
01000 set 0 check-state :default
01100 set 0 allow tcp from any to me 5656 setup keep-state :default // 5656 only
02000 set 1 check-state :default

34

02100 set 1 allow tcp from any to me 5657 setup keep-state :default // 5657 only
65535 set 31 deny ip from any to any
#
ipfw set disable 0
#
ipfw set show
disable 0 enable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30
#
ipfw -S list
DISABLED 01000 set 0 check-state :default
DISABLED 01100 set 0 allow tcp from any to me 5656 setup keep-state :default // 5656
only
02000 set 1 check-state :default
02100 set 1 allow tcp from any to me 5657 setup keep-state :default // 5657 only
65535 set 31 deny ip from any to any
#

To atomically change from one set to the other use the ipfw set swap command:

ipfw set swap 0 1

What actually happens is that the rules in the sets get swapped; that is, all the rules in set 0 get
put in set 1 and all the rules in set 1 get put in set 0.

#
ipfw -S list
DISABLED 01000 set 0 check-state :default
DISABLED 01100 set 0 allow tcp from any to me 5656 setup keep-state :default // 5656
only
02000 set 1 check-state :default
02100 set 1 allow tcp from any to me 5657 setup keep-state :default // 5657 only
65535 set 31 deny ip from any to any
#
ipfw set swap 0 1
#
ipfw -S list
01000 set 1 check-state :default
01100 set 1 allow tcp from any to me 5656 setup keep-state :default // 5656 only
DISABLED 02000 set 0 check-state :default
DISABLED 02100 set 0 allow tcp from any to me 5657 setup keep-state :default // 5657
only
65535 set 31 deny ip from any to any

Note carefully that when swapping sets where one of the sets is disabled, the set number is still
disabled after the swap, even though the rules are now different. This can lead to unexpected
consequences such as the following:

35

ipfw -S list
01000 set 0 check-state :default
01100 set 0 allow tcp from any to me 5656 setup keep-state :default // 5656 only
02000 set 1 check-state :default
02100 set 1 allow tcp from any to me 5660 setup keep-state :default // 5660 only
65535 set 31 deny ip from any to any
#
ipfw set disable 0
#
ipfw -S list
DISABLED 01000 set 0 check-state :default
DISABLED 01100 set 0 allow tcp from any to me 5656 setup keep-state :default // 5656
only
02000 set 1 check-state :default
02100 set 1 allow tcp from any to me 5660 setup keep-state :default // 5660 only
65535 set 31 deny ip from any to any
#
ipfw set swap 0 1
#
ipfw -S list
01000 set 1 check-state :default
01100 set 1 allow tcp from any to me 5656 setup keep-state :default // 5656 only
DISABLED 02000 set 0 check-state :default
DISABLED 02100 set 0 allow tcp from any to me 5660 setup keep-state :default // 5660
only
65535 set 31 deny ip from any to any

Here set 0 is disabled, and then swapped. After the swap, set 0 is still disabled, though the rules
have changed.

Note that all sets are initially enabled. When a set is disabled, say set 3, all other sets are still active,
even if no rule references them. Sets are analogous to the pieces on the back row of a chess board.
If a knight or a bishop is removed, that one piece is not able to play, but all the others are able to
play.

set 31 cannot be deleted or changed. It can however partially participate in a swap.

ipfw set swap 1 31

This swap will complete successfully (return code 0), but the effect is not the same as the swaps
above. The default rule in set 31 is not swapped, but the set number for the other rules (rules in set
1) are set to 31:

ipfw -S list
01000 set 1 check-state :default
01100 set 1 allow tcp from 1.2.3.4 to me 8080
01200 set 1 allow tcp from 1.2.3.4 to me 8081
65535 set 31 deny ip from any to any

36

#
ipfw set swap 1 31
#
ipfw -S list
01000 set 31 check-state :default
01100 set 31 allow tcp from 1.2.3.4 to me 8080
01200 set 31 allow tcp from 1.2.3.4 to me 8081
65535 set 31 deny ip from any to any

As noted in the ipfw(8) manual page, rules in set 31 cannot be flushed. There are now 4 rules in set
31:

ipfw -f flush
Flushed all rules.
#
ipfw -S list
01000 set 31 check-state :default
01100 set 31 allow tcp from 1.2.3.4 to me 8080
01200 set 31 allow tcp from 1.2.3.4 to me 8081
65535 set 31 deny ip from any to any

While ipfw flush did not clean out rules in set 31, the command ipfw delete set 31 will clean out
all but the default rule:

ipfw delete set 31
#
ipfw -S list
65535 set 31 deny ip from any to any

Further, note that any set that is disabled, remains disabled after a flush. Thus, when disabling a
set and then flushing the entire ruleset, any rules added back into the disabled set number will
still be disabled. This includes set 0, the default set.

Consider the following:

ipfw list
01000 check-state :default
01100 allow tcp from any to me 1111
02000 allow tcp from any to me 2222
03000 allow tcp from any to me 3333
65535 deny ip from any to any
#
ipfw set disable 0
#
ipfw -S list
DISABLED 01000 set 0 check-state :default
DISABLED 01100 set 0 allow tcp from any to me 1111

37

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

DISABLED 02000 set 0 allow tcp from any to me 2222
DISABLED 03000 set 0 allow tcp from any to me 3333
65535 set 31 deny ip from any to any
#
ipfw -f flush
Flushed all rules.
#
ipfw add 100 check-state
00100 check-state :default
ipfw add 200 allow tcp from any to me 5555
00200 allow tcp from any to me 5555
ipfw add 300 allow tcp from any to me 6666
00300 allow tcp from any to me 6666
ipfw add 400 allow tcp from any to me 7777
00400 allow tcp from any to me 7777
#
ipfw -S list
DISABLED 00100 set 0 check-state :default
DISABLED 00200 set 0 allow tcp from any to me 5555
DISABLED 00300 set 0 allow tcp from any to me 6666
DISABLED 00400 set 0 allow tcp from any to me 7777
65535 set 31 deny ip from any to any
#

Because set 0 was disabled before the flush, the flush has no effect on the enable/disable state of
that set.

Note that it is even possible to disable sets of rules that do not yet exist:

kldload ipfw
ipfw2 (+ipv6) initialized, divert loadable, nat loadable, default to deny, logging
disabled
#
ipfw -S list
65535 set 31 deny ip from any to any
#
ipfw set show
enable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30
#
ipfw set disable 4 5 6 7 8 9
#
ipfw set show
disable 4 5 6 7 8 9 enable 0 1 2 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30
#

Using sets can be very helpful, as long as their properties and limitations are clearly understood.

38

3.3.6. Tags

Tags allow for marking incoming packets in such a way that later rules can be applied based on the
tag.

For a simple example, consider tagging incoming packets from different networks. Later rules
determine if the tagged packets are allowed or denied:

ipfw add 100 check-state
00100 check-state :default
#
ipfw add 1000 count tag 10 tcp from 172.16.200.0/24 to me 5656
01000 count tag 10 tcp from 172.16.200.0/24 to me 5656
#
ipfw add 1100 count tag 20 tcp from 172.16.225.0/24 to me 5656
01100 count tag 20 tcp from 172.16.225.0/24 to me 5656
#
ipfw add 1200 count tag 30 tcp from 203.0.113.0/24 to me 5656
01200 count tag 30 tcp from 203.0.113.0/24 to me 5656
#
ipfw add 3000 allow tcp from any to me tagged 30 setup keep-state
03000 allow tcp from any to me tagged 30 setup keep-state :default
#
ipfw add 4000 deny tcp from any to me tagged 10,20
04000 deny tcp from any to me tagged 10,20
#

Test this by using ncat(1) to set its own source address. To do this, first setup two alias address on
the em0 interface on the external1 VM:

ifconfig em0 172.16.200.10/24 alias
ifconfig em0 172.16.225.10/24 alias
#
ifconfig em0
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

options=81209b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,WOL_MAGIC,VLAN_HWFILT
ER>
 ether 02:49:50:46:57:10
 inet 203.0.113.10 netmask 0xffffff00 broadcast 203.0.113.255
 inet 172.16.200.10 netmask 0xffffff00 broadcast 172.16.200.255
 inet 172.16.225.10 netmask 0xffffff00 broadcast 172.16.225.255
 media: Ethernet autoselect (1000baseT <full-duplex>)
 status: active
 nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>

39

https://man.freebsd.org/cgi/man.cgi?query=ncat&sektion=1&format=html

Figure 10. Use of Tags

Because of the rule tagging in this ruleset, only traffic tagged with value "30" is allowed to pass.

Tags, combined with lookup tables allow for powerful policy based network access.

3.3.7. Logging

ipfw supports two methods of logging:

3.3.7.1. Method 1 – using ipfw0, the IPFW pseudointerface

kldload ipfw
ifconfig ipfw0 create

Note that the ipfw.ko kernel module must be loaded before creating the ipfw0 interface. Also, note
that if ipfw.ko is unloaded, the interface is destroyed and is no longer available.

Why use the ipfw0 interface?

It is possible to read logs in real time with programs such as tcpdump(1), wireshark(1), or other
network monitoring programs. This includes viewing the entire packet.

An example is given further below.

3.3.7.2. Method 2 – use syslogd

Setting the sysctl variable net.inet.ip.fw.verbose = 1 will instruct the firewall to log packets to
syslogd(8) even when the ipfw0 interface exists. Syslogd must be configured via /etc/syslog.conf.
ipfw packets will be logged with a LOG_SECURITY facility. The logging limit is configurable via
net.inet.ip.fw.verbose_limit, which is set to 0 (unlimited) by default.

Why use the syslogd interface?

Of the two methods, it is the only one that processes count actions, and is also the only one that
prints rule numbers with the log entry.

To test logging, create a rule with the log keyword:

ipfw add 1000 allow log udp from 203.0.113.10 to me 5656

40

https://man.freebsd.org/cgi/man.cgi?query=tcpdump&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=wireshark&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=syslogd&sektion=8&format=html

Counters are also a feature of rules that specify the log keyword. If rules in a ruleset are edited to
add the log keyword, matches for all rules will be included in the log entries with associated counts.

Create a ruleset using the log keyword that looks like this:

01000 allow log udp from 203.0.113.10 to me 5656
02000 allow log udp from 203.0.113.10 to me 5657
03000 allow log udp from 203.0.113.10 to me 5658
04000 allow log udp from 203.0.113.10 to me 5659
65535 deny ip from any to any

3.3.7.3. Using Method 1

To use Method 2, first set the required sysctl variable:

sysctl net.inet.ip.fw.verbose=0

Then, capture/view logs with tcpdump:

tcpdump -i ipfw0 -X -v

Experiment with the tcpdump -v, -vv, and -vvv options, which gives increasingly more verbose
output. Consult tcpdump(1) for details.


Be sure to remove the address aliases added to the em0 interface on the external1
VM from the previous Section on Tags.

The example below examines traffic with the ucont.sh script on the external1 VM and the
userv3.sh script on the firewall VM.

Figure 11. UDP Traffic From External1 to Firewall

Logged traffic from the above communication appears on the log device ipfw0:

#
tcpdump -i ipfw0 -X -vvv
tcpdump: WARNING: ipfw0: That device doesn't support promiscuous mode
(BIOCPROMISC: Invalid argument)
tcpdump: listening on ipfw0, link-type EN10MB (Ethernet), capture size 262144 bytes

41

https://man.freebsd.org/cgi/man.cgi?query=tcpdump&sektion=1&format=html

20:50:44.259127 IP (tos 0x0, ttl 64, id 61929, offset 0, flags [none], proto UDP (17),
length 70)
 203.0.113.10.27337 > 203.0.113.50.5656: [udp sum ok] UDP, length 42
 0x0000: 4500 0046 f1e9 0000 4011 1c61 ac10 0a0a E..F....@..a....
 0x0010: ac10 0a32 6ac9 1618 0032 00ff 5544 5020 ...2j....2..UDP.
 0x0020: 7061 636b 6574 2066 726f 6d20 5b31 3732 packet.from.[172
 0x0030: 2e31 362e 3130 2e31 305d 2c5b 3536 3536 .16.10.10],[5656
 0x0040: 5d2c 5b31 5d0a],[1].
20:50:44.581025 IP (tos 0x0, ttl 64, id 61930, offset 0, flags [none], proto UDP (17),
length 70)
 203.0.113.10.41914 > 203.0.113.50.5656: [udp sum ok] UDP, length 42
 0x0000: 4500 0046 f1ea 0000 4011 1c60 ac10 0a0a E..F....@..`....
 0x0010: ac10 0a32 a3ba 1618 0032 c80c 5544 5020 ...2.....2..UDP.
 0x0020: 7061 636b 6574 2066 726f 6d20 5b31 3732 packet.from.[172
 0x0030: 2e31 362e 3130 2e31 305d 2c5b 3536 3536 .16.10.10],[5656
 0x0040: 5d2c 5b32 5d0a],[2].
20:50:45.960845 IP (tos 0x0, ttl 64, id 61931, offset 0, flags [none], proto UDP (17),
length 70)
 203.0.113.10.33126 > 203.0.113.50.5656: [udp sum ok] UDP, length 42
 0x0000: 4500 0046 f1eb 0000 4011 1c5f ac10 0a0a E..F....@.._....
 0x0010: ac10 0a32 8166 1618 0032 ea5f 5544 5020 ...2.f...2._UDP.
 0x0020: 7061 636b 6574 2066 726f 6d20 5b31 3732 packet.from.[172
 0x0030: 2e31 362e 3130 2e31 305d 2c5b 3536 3536 .16.10.10],[5656
 0x0040: 5d2c 5b33 5d0a],[3].
^C

3.3.7.4. Using Method 2

To use Method 2, first set the required sysctl variable:

sysctl net.inet.ip.fw.verbose=1

Next, examine /etc/syslog.conf to see if there is already a facility and level for security listed. In
modern versions of FreeBSD it is common to see:

security.* /var/log/security

ipfw creates logs with the LOG_SECURITY facility, and INFO and DEBUG levels, and sends output to
the file /var/log/security in this case.

If this entry exists in /etc/syslog.conf, the system is all set. Otherwise read through the below and set
up an entry for an ipfw logfile.

To log to syslogd(8), add the following line to the end of /etc/syslog.conf:

security.* /var/log/security

42

https://man.freebsd.org/cgi/man.cgi?query=syslogd&sektion=8&format=html

(FreeBSD /etc/syslog.conf allows tabs or spaces to be used in the file.)

Create the logfile with

touch /var/log/security

then send a HANGUP signal to the syslogd daemon:

kill -HUP <pid of syslogd>

Re-run the above example and Use tail -f to see logs in real time.

Note that ipfw only logs matched rules with this method:

tail -f /var/log/security
Apr 3 14:50:12 firewall newsyslog[401]: logfile first created
Apr 9 21:05:13 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:59203
203.0.113.50:5656 in via em0
Apr 9 21:05:15 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:12401
203.0.113.50:5656 in via em0
Apr 9 21:05:16 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:45319
203.0.113.50:5656 in via em0
^C

The log entry includes the date, time, host, service, and rule number (1000 above) to make it easy to
track which rule is being matched.

General Notes on logging

Consider the following ruleset:

ipfw list
00100 check-state :default
01000 allow tcp from 203.0.113.100 to me setup keep-state :default
02000 allow icmp from 203.0.113.100 to me
02100 allow icmp from me to 203.0.113.100
03000 allow log udp from 203.0.113.10 to me 5656
04000 allow log logamount 20 udp from 203.0.113.10 to me 5657
05000 allow log logamount 20 udp from 203.0.113.10 to me 5658
65535 deny ip from any to any

When using Method 2 (syslog) on a quiet system, notice that the entries do not appear right away
when reading the security log file in real time (for example, tail -f /var/log/security). This is
because syslogd will buffer identical lines and output a notification only occasionally as in the
below example:

43

Mar 28 22:30:01 firewall kernel: ipfw: 3000 Accept UDP 203.0.113.10:27519
203.0.113.50:5656 in via em0
Mar 28 22:30:03 firewall syslogd: last message repeated 4 times
Mar 28 22:32:31 firewall syslogd: last message repeated 31 times

Also, Method 1 (using the ipfw0 interface) and Method 2 (syslog) are mutually exclusive. It is not
possible to have both active at the same time. If net.inet.ip.fw.verbose=0, the output will be to the
ipfw0 interface; if the value is 1, the log output will be to syslog.

logamount values in rules only apply to Method 2 - syslog. They have no effect on limiting the
number of packets sent out the ipfw0 interface.

In Method 2 - syslog, when the log limit is reached, ipfw will send a notification similar to the
following into the designated security logging file (default: /var/log/security):

Mar 28 23:00:10 firewall kernel: ipfw: 5000 Accept UDP 203.0.113.10:63367
203.0.113.50:5658 in via em0
Mar 28 23:00:11 firewall kernel: ipfw: 5000 Accept UDP 203.0.113.10:30909
203.0.113.50:5658 in via em0
Mar 28 23:00:11 firewall kernel: ipfw: limit 20 reached on entry 5000

And, at the same time, it also conveniently sends the same message to /var/log/messages, the
standard FreeBSD logfile:

Mar 28 23:00:11 firewall kernel: ipfw: limit 20 reached on entry 5000

After that notification is sent, no more syslog entries will be sent from the matching rule until the
log counters are reset with:

ipfw resetlog <rule number>

When the resetlog command is entered, ipfw will send a reset notification to syslog:

Mar 28 23:04:51 firewall kernel: ipfw: logging count reset.

Unfortunately, as of FreeBSD version 14.1, it does not say which rule the count was reset for.
Presumably, the firewall admin should know which rule since they just entered the command, at
least if there is only one admin. In any case, it is a good idea to keep track of that manually when
working with many rules that include the log keyword.

If issuing an ipfw resetlog command without specifying a rule number, all counters in all rules are
reset and ipfw sends the following notification:

44

Mar 28 23:08:52 firewall kernel: ipfw: All logging counts reset.

Finally, note that the sysctl variable net.inet.ip.fw.verbose_limit provides a "default limit" if one is
not specified with the logamount keyword in the ruleset.

Consider this scenario:

sysctl net.inet.ip.fw.verbose_limit
net.inet.ip.fw.verbose_limit: 5 <---- The limit is preset to 5

ipfw list
65535 deny ip from any to any

As new rules are added, ipfw will apply any logamount value it finds in the body of a rule. If a rule
being entered does not have a logamount entry, the value defaults to the current
net.inet.ip.fw.verbose_limit amount.

ipfw add 100 check-state
00100 check-state :default
#
ipfw add 3000 allow log udp from 203.0.113.10 to me 5656
03000 allow log logamount 5 udp from 203.0.113.10 to me 5656
#
ipfw add 4000 allow log logamount 20 udp from 203.0.113.10 to me 5657
04000 allow log logamount 20 udp from 203.0.113.10 to me 5657
#
ipfw list
00100 check-state :default
03000 allow log logamount 5 udp from 203.0.113.10 to me 5656
04000 allow log logamount 20 udp from 203.0.113.10 to me 5657
65535 deny ip from any to any

If the sysctl for net.inet.ip.fw.verbose_limit is changed after the rule is entered, it has no effect:

sysctl net.inet.ip.fw.verbose_limit=3
net.inet.ip.fw.verbose_limit: 5 -> 3

and later in /var/log/messages

Mar 29 11:07:02 firewall kernel: ipfw: limit 5 reached on entry 3000

 ...

Mar 29 11:07:24 firewall kernel: ipfw: limit 20 reached on entry 4000

45

3.3.8. Reset

The reset keyword sends an immediate TCP reset on a rule match containing that keyword. This
immediately shuts down any TCP connection from the source matching the rule. Create a new
ruleset as follows:

ipfw list
00100 check-state :default
01000 allow log tcp from 203.0.113.10 to me 5656 setup keep-state :default
02000 reset log tcp from 203.0.113.10 to me 5657
03000 reset log udp from 203.0.113.10 to me 5658
65535 deny ip from any to any

Test rule 2000 by executing sh tcon.sh 5657 from the external1 VM. Note that the corresponding
script, "sh tserv.sh" does not even have to be running.

The syslog view of a TCP reset rule match looks like this:

Apr 9 21:44:49 firewall kernel: ipfw: 1000 Accept TCP 203.0.113.50:5656
203.0.113.10:28218 out via em0
Apr 9 21:44:49 firewall syslogd: last message repeated 1 times
Apr 9 21:44:49 firewall kernel: ipfw: 1000 Accept TCP 203.0.113.10:28218
203.0.113.50:5656 in via em0
Apr 9 21:45:01 firewall kernel: ipfw: 2000 Reset TCP 203.0.113.10:12998
203.0.113.50:5657 in via em0
Apr 9 21:45:07 firewall kernel: ipfw: 2000 Reset TCP 203.0.113.10:13782
203.0.113.50:5657 in via em0

When sysctl net.inet.ip.fw.verbose=0, there is no discernible output on ipfw0 for a reset action. A
TCP SYN packet arrives and that is all that is displayed. To actually witness the reset, run
tcpdump(8) on the specific interface (em0 in this case):

tcpdump -i em0 -X -vvv
tcpdump: listening on em0, link-type EN10MB (Ethernet), capture size 262144 bytes
21:53:39.376825 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length
60)
 203.0.113.10.32945 > 203.0.113.50.5657: Flags [S], cksum 0x68fa (correct), seq
1926269947, win 65535, options [mss 1460,nop,wscale 6,sackOK,TS val 648984165 ecr 0],
length 0
 0x0000: 4500 003c 0000 4000 4006 ce5f ac10 0a0a E..<..@.@.._....
 0x0010: ac10 0a32 80b1 1619 72d0 8bfb 0000 0000 ...2....r.......
 0x0020: a002 ffff 68fa 0000 0204 05b4 0103 0306 h...........
 0x0030: 0402 080a 26ae b665 0000 0000 &..e....
21:53:39.377143 IP (tos 0x10, ttl 64, id 1965, offset 0, flags [none], proto TCP (6),
length 40)
 203.0.113.50.5657 > 203.0.113.10.32945: Flags [R.], cksum 0xaddc (correct), seq 0,
ack 1926269948, win 0, length 0
 0x0000: 4510 0028 07ad 0000 4006 06b7 ac10 0a32 E..(....@......2

46

https://man.freebsd.org/cgi/man.cgi?query=tcpdump&sektion=8&format=html

 0x0010: ac10 0a0a 1619 80b1 0000 0000 72d0 8bfc r...
 0x0020: 5014 0000 addc 0000 P.......
^C

A UDP rule containing the reset keyword just drops the packet. Nothing is sent back to the source
address. If the log keyword is also used on the rule, a log entry is generated for syslog (if enabled):

Apr 9 21:58:49 firewall kernel: ipfw: 3000 Reset UDP 203.0.113.10:56503
203.0.113.50:5658 in via em0

3.3.9. Tee

The tee rule requires a divert(4) socket set up beforehand. Refer to the divert rule covered below
for setting up the socket. Once the socket is set up, the tee keyword works like divert except that it
is not interested in any packet return. It is simply copying the packet to the socket. Processing
continues with the next rule.

In essence, tee allows the packet to be sent to userspace for any purpose desired - monitoring,
copying, counting - whatever.

ipfw add 1000 tee 700 ip from any to me

3.3.10. Unreach

The unreach keyword directs ipfw to respond back to the source when packets arrive with a
destination port that is not opened by any service. ipfw sends an ICMP reply with the code set to the
keyword parameter. This works for any IP protocol.

Because ipfw sends an ICMP packet back to the source, the ruleset must allow outbound ICMP.

Consider the following ruleset:

ipfw -a list
00100 0 0 allow icmp from me to any
01000 0 0 unreach 100 log udp from any to me 5656
02000 0 0 unreach 200 log tcp from any to me 5657
03000 0 0 unreach 250 log ip from any to me 5658

The counters are zero when the external1 VM sends its packet, a UDP packet destined for port
5656, for which no service is currently set up.

ipfw matches this with rule 1000 and sends an ICMP unreachable notice with code 100 (an
arbitrary value, but see the list in ipfw(8)). The offending packet is encapsulated in the data portion
of the ICMP reply:

47

https://man.freebsd.org/cgi/man.cgi?query=divert&sektion=4&format=html
https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

tcpdump -i bridge0 -X -vvv
tcpdump: listening on bridge0, link-type EN10MB (Ethernet), capture size 262144 bytes
10:02:37.195380 IP (tos 0x0, ttl 64, id 45085, offset 0, flags [none], proto UDP (17),
length 70)
 203.0.113.10.65216 > 203.0.113.50.5656: [udp sum ok] UDP, length 42
 0x0000: 4500 0046 b01d 0000 4011 524c cb00 710a E..F....@.RL..q.
 0x0010: cb00 7132 fec0 1618 0032 701e 5544 5020 ..q2.....2p.UDP.
 0x0020: 7061 636b 6574 2066 726f 6d20 5b32 3033 packet.from.[203
 0x0030: 2e30 2e31 3133 2e31 305d 2c5b 3536 3536 .0.113.10],[5656
 0x0040: 5d2c 5b32 5d0a],[2].
10:02:37.196128 IP (tos 0x0, ttl 64, id 29611, offset 0, flags [none], proto ICMP (1),
length 98)
 203.0.113.50 > 203.0.113.10: ICMP 203.0.113.50 unreachable - #100, length 78
 IP (tos 0x0, ttl 64, id 45085, offset 0, flags [none], proto UDP (17), length
70)
 203.0.113.10.65216 > 203.0.113.50.5656: [udp sum ok] UDP, length 42
 0x0000: 4500 0062 73ab 0000 4001 8eb2 cb00 7132 E..bs...@.....q2
 0x0010: cb00 710a 0364 751d 0000 0000 4500 0046 ..q..du.....E..F
 0x0020: b01d 0000 4011 524c cb00 710a cb00 7132 @.RL..q...q2
 0x0030: fec0 1618 0032 701e 5544 5020 7061 636b 2p.UDP.pack
 0x0040: 6574 2066 726f 6d20 5b32 3033 2e30 2e31 et.from.[203.0.1
 0x0050: 3133 2e31 305d 2c5b 3536 3536 5d2c 5b32 13.10],[5656],[2
 0x0060: 5d0a].

The results for a TCP unreachable are almost the same. The ICMP packet encapsulates the SYN
packet in the data portion of the reply.

Here is a view of an ICMP Reply to unreachable TCP port 5657:

tcpdump -i bridge0 -X -vvv
tcpdump: listening on bridge0, link-type EN10MB (Ethernet), capture size 262144 bytes
15:24:03.663104 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length
60)
 203.0.113.10.58575 > 203.0.113.50.5657: Flags [S], cksum 0x092c (correct), seq
1062429515, win 65535, options [mss 1460,nop,wscale 6,sackOK,TS val 3566166113 ecr 0],
length 0
 0x0000: 4500 003c 0000 4000 4006 ce5f ac10 0a0a E..<..@.@..-....
 0x0010: ac10 0a32 e4cf 1619 3f53 634b 0000 0000 ...2....?ScK....
 0x0020: a002 ffff 092c 0000 0204 05b4 0103 0306 ,..........
 0x0030: 0402 080a d48f 6061 0000 0000 `a....
15:24:03.664168 IP (tos 0x0, ttl 64, id 37717, offset 0, flags [none], proto ICMP (1),
length 88)
 203.0.113.50 > 203.0.113.10: ICMP # 200 203.0.113.50 unreachable, length 68*
 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 60)
 203.0.113.10.58575 > 203.0.113.50.5657: Flags [S], cksum 0x092c (correct), seq
1062429515, win 65535, options [mss 1460,nop,wscale 6,sackOK,TS val 3566166113 ecr 0],
length 0
 0x0000: 4500 0058 9355 0000 4001 7af3 ac10 0a32 E..X.U..@.z....2
 0x0010: ac10 0a0a 03c8 68c3 0000 0000 4500 003c h.....E..<

48

 0x0020: 0000 4000 4006 ce5f ac10 0a0a ac10 0a32 ..@.@.._.......2
 0x0030: e4cf 1619 3f53 634b 0000 0000 a002 ffff ?ScK........
 0x0040: 092c 0000 0204 05b4 0103 0306 0402 080a .,..............
 0x0050: d48f 6061 0000 0000 ..`a....

3.3.11. Setdscp

The setdscp action directs ipfw to set an IP header option on outbound packets. The action has no
effect on inbound packets. The header option, formerly known as the "Type of Service" (ToS) option,
now defines several classes of differentiated services (DiffServ) per several RFCs - RFC 2474, RFC
3168, and RFC 3260.

These service classes such as "Network Control", "Telephony", "Multimedia Conferencing",
"Broadcast Video", "Low-latency Data", etc. all require their packets to receive special handling in
the network. This is achieved by inserting "code points" - numerical values in the packet header -
that define each class.

Firewalls, routers, switches, and other network devices interpret these values and, in theory,
service the packets according to their class. See this Wikipedia article on Differentiated Services:
https://en.wikipedia.org/wiki/Differentiated_services.

In practice, support for service classes vary among network operators. Check the man page for a list
of code points settable by ipfw.

The example below sets the DSCP value to "af31", a codepoint in the "Multimedia Streaming" class.

On the external1 VM, set up a listening service:
ncat -u -l 5656

On the firewall VM create this ruleset:
ipfw add 2000 setdscp af31 udp from me to any 5656
ipfw add 3000 allow udp from me to any

Note that rule processing for the setdscp keyword continues to the next rule.

Note also that the DSCP value takes up only a partial byte in the IP header, sharing it with two bits
of ECN (Explicit Congestion Notification). The binary value for "af31" is 011010nn, where 'nn' are
the two bits for ECN. If no ECN, the value resolves to 0x68 (104 decimal).

An outbound traffic example, generated by ncat -u 203.0.113.10 5656 from the firewall VM is
shown as received by the external1 VM:

On the firewall VM send out a UDP packet:

echo "Greetings from the firewall" | ncat -u 203.0.113.10 5656

To view, run tcpdump on the network interface on the external1 VM:

49

https://www.rfc-editor.org/rfc/rfc2474.html
https://www.rfc-editor.org/rfc/rfc3168.html
https://www.rfc-editor.org/rfc/rfc3168.html
https://www.rfc-editor.org/rfc/rfc3260.html
https://en.wikipedia.org/wiki/Differentiated_services

tcpdump -i em0 -X -vvv
tcpdump: listening on em0, link-type EN10MB (Ethernet), capture size 262144 bytes
10:14:22.173252 IP (tos 0x68, ttl 64, id 30816, offset 0, flags [none], proto UDP
(17), length 57)
 203.0.113.50.17767 > 203.0.113.10.5656: [udp sum ok] UDP, length 29
 0x0000: 4568 0039 7860 0000 4011 958f ac10 0a32 Eh.9x`..@......2
 0x0010: ac10 0a0a 4567 1618 0025 0f5b 4772 6565 Eg...%.[Gree
 0x0020: 7469 6e67 7320 6672 6f6d 2074 6865 2066 tings.from.the.f
 0x0030: 6972 6577 616c 6c2e 0a irewall..

Diffserve codepoints can be set on any IP based protocol or restricted to selected protocols and/or
ports through suitable rules.

3.3.12. Skipto

The skipto action directs the firewall engine to pass over any rules less than the skipto parameter
number. If an early rule can match a packet characteristic such as an address, port, TCP or UDP
header option or similar, a skipto rule can jump to a potentially much later section of the firewall
ruleset to handle the packet.

Consider the following (contrived) ruleset:

ipfw add 100 check-state
ipfw add 1000 allow tcp from me to any established keep-state
ipfw add 2000 allow tcp from 203.0.113.10 to me 4500 setup keep-state
ipfw add 3000 allow tcp from 203.0.113.10 to me 4502 setup keep-state
ipfw add 4000 allow tcp from 203.0.113.10 to me 4504 setup keep-state
ipfw add 5000 allow tcp from 203.0.113.10 to me 4506 setup keep-state
ipfw add 6000 allow tcp from 203.0.113.10 to me 4508 setup keep-state
ipfw add 7000 allow tcp from 203.0.113.10 to me 4510 setup keep-state
ipfw add 8000 allow tcp from 203.0.113.10 to me 4512 setup keep-state
ipfw add 9000 allow tcp from 203.0.113.10 to me 4512 setup keep-state
ipfw add 10000 allow tcp from 203.0.113.10 to me 5656 setup keep-state

With the external1 VM using the tcon.sh 5656 TCP connection script, ipfw has to traverse the
entire firewall ruleset, checking each rule in turn for a match. (When testing this ruleset, ensure
that the firewall VM is running the appropriate service script such as tserv3.sh.)

By placing a skipto action rule after the check-state action, ipfw jumps directly to the desired rule:

ipfw add 100 check-state
ipfw add 500 skipto 10000 tcp from 203.0.113.10 to me 5656
ipfw add 1000 allow tcp from me to any established keep-state
ipfw add 2000 allow tcp from 203.0.113.10 to me 4500 setup keep-state
ipfw add 3000 allow tcp from 203.0.113.10 to me 4502 setup keep-state
ipfw add 4000 allow tcp from 203.0.113.10 to me 4504 setup keep-state
ipfw add 5000 allow tcp from 203.0.113.10 to me 4506 setup keep-state
ipfw add 6000 allow tcp from 203.0.113.10 to me 4508 setup keep-state

50

ipfw add 7000 allow tcp from 203.0.113.10 to me 4510 setup keep-state
ipfw add 8000 allow tcp from 203.0.113.10 to me 4512 setup keep-state
ipfw add 9000 allow tcp from 203.0.113.10 to me 4512 setup keep-state
ipfw add 10000 allow tcp from 203.0.113.10 to me 5656 setup keep-state

Use the -a command line parameter to see if the skipto action is working (or use ipfw show):

ipfw -a list
00100 0 0 check-state :default
00500 1 60 skipto 10000 tcp from 203.0.113.10 to me 5656
01000 0 0 allow tcp from me to any established keep-state :default
02000 0 0 allow tcp from 203.0.113.10 to me 4500 setup keep-state :default
03000 0 0 allow tcp from 203.0.113.10 to me 4502 setup keep-state :default
04000 0 0 allow tcp from 203.0.113.10 to me 4504 setup keep-state :default
05000 0 0 allow tcp from 203.0.113.10 to me 4506 setup keep-state :default
06000 0 0 allow tcp from 203.0.113.10 to me 4508 setup keep-state :default
07000 0 0 allow tcp from 203.0.113.10 to me 4510 setup keep-state :default
08000 0 0 allow tcp from 203.0.113.10 to me 4512 setup keep-state :default
09000 0 0 allow tcp from 203.0.113.10 to me 4514 setup keep-state :default
10000 8 474 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
65535 0 0 deny ip from any to any

General notes on skipto:

• The skipto action does not allow negative numbers as a parameter.

• A skipto to rule 0 or to a value greater than 65534, causes ipfw to throw an error.

• It is possible to use the skipto action to skip between sets. However, if the set containing the
skipto target is disabled, processing continues with the next rule in any set that is enabled.

For example, if there are three sets - 0, 1, and 2, with a disabled set 1 containing the destination of
the skipto action, processing will continue with the next rule. See the below ruleset and counters.
Because set 1 is disabled, the next rule in any enabled set is rule 2700. Processing continues at 2700,
but the packet was not matched until rule 3000.

ipfw -Sa list
00100 0 0 set 0 check-state :default
00101 1 60 set 0 skipto 2000 tcp from 203.0.113.10 to me
00120 0 0 set 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
00150 0 0 set 0 allow tcp from me to any established keep-state :default
01000 0 0 set 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
DISABLED 01200 0 0 set 1 allow tcp from 203.0.113.10 to me 6500 setup keep-state
:default
DISABLED 01800 0 0 set 1 allow tcp from 203.0.113.10 to me 6512 setup keep-state
:default
DISABLED 01900 0 0 set 1 allow tcp from 203.0.113.10 to me 6514 setup keep-state
:default
DISABLED 02000 0 0 set 1 allow tcp from 203.0.113.10 to me 5656 setup keep-state
:default

51

02700 0 0 set 2 allow tcp from 203.0.113.10 to me 7510 setup keep-state :default
02800 0 0 set 2 allow tcp from 203.0.113.10 to me 7512 setup keep-state :default
02900 0 0 set 2 allow tcp from 203.0.113.10 to me 7514 setup keep-state :default
03000 8 474 set 2 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
65535 0 0 set 31 deny ip from any to any

• If using skipto to a rule number that has multiple rules, the first matching rule at or after that
number is executed:

ipfw -Sa list
00100 0 0 set 0 check-state :default
00101 1 60 set 0 skipto 2000 tcp from 203.0.113.10 to me
00120 0 0 set 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
00150 0 0 set 0 allow tcp from me to any established keep-state :default
01600 0 0 set 1 allow tcp from 203.0.113.10 to me 6508 setup keep-state :default
01700 0 0 set 1 allow tcp from 203.0.113.10 to me 6510 setup keep-state :default
02000 0 0 set 1 allow tcp from 203.0.113.10 to me 6512 setup keep-state :default
02000 0 0 set 1 allow tcp from 203.0.113.10 to me 6514 setup keep-state :default
02000 0 0 set 2 allow tcp from 203.0.113.10 to me 7500 setup keep-state :default
02000 0 0 set 2 allow tcp from 203.0.113.10 to me 7502 setup keep-state :default
02000 0 0 set 2 allow tcp from 203.0.113.10 to me 7504 setup keep-state :default
02500 0 0 set 2 allow tcp from 203.0.113.10 to me 7506 setup keep-state :default
02600 0 0 set 2 allow tcp from 203.0.113.10 to me 7508 setup keep-state :default
02700 0 0 set 2 allow tcp from 203.0.113.10 to me 7510 setup keep-state :default
02800 0 0 set 2 allow tcp from 203.0.113.10 to me 7512 setup keep-state :default
02900 0 0 set 2 allow tcp from 203.0.113.10 to me 7514 setup keep-state :default
03000 10 567 set 2 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
65535 0 0 set 31 deny ip from any to any

• It is possible to enter a rule with a skipto rule number that is lower than the current rule
number, attempting to go backward in the ruleset. However, this has no effect, and processing
continues with the next rule:

ipfw -Sa list
00100 0 0 set 0 check-state :default
00101 1 60 set 0 skipto 1000 tcp from 203.0.113.10 to me
00120 0 0 set 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
00150 0 0 set 0 allow tcp from me to any established keep-state :default
00200 0 0 set 0 allow tcp from 203.0.113.10 to me 4500 setup keep-state :default
00300 0 0 set 0 allow tcp from 203.0.113.10 to me 4502 setup keep-state :default
00400 0 0 set 0 allow tcp from 203.0.113.10 to me 4504 setup keep-state :default
00500 0 0 set 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
00600 0 0 set 0 allow tcp from 203.0.113.10 to me 4508 setup keep-state :default
00700 0 0 set 0 allow tcp from 203.0.113.10 to me 4512 setup keep-state :default
00800 0 0 set 0 allow tcp from 203.0.113.10 to me 4514 setup keep-state :default
01000 1 60 set 0 skipto 500 tcp from 203.0.113.10 to me
01100 8 475 set 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
65535 0 0 set 31 deny ip from any to any

52

• It is also possible (but not advised) to skipto a skipto rule:

00100 0 0 set 0 check-state :default
00101 1 60 set 0 skipto 1000 tcp from 203.0.113.10 to me
00120 0 0 set 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
00150 0 0 set 0 allow tcp from me to any established keep-state :default
00200 0 0 set 0 allow tcp from 203.0.113.10 to me 4500 setup keep-state :default
00300 0 0 set 0 allow tcp from 203.0.113.10 to me 4502 setup keep-state :default
00400 0 0 set 0 allow tcp from 203.0.113.10 to me 4504 setup keep-state :default
00500 0 0 set 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
00600 0 0 set 0 allow tcp from 203.0.113.10 to me 4508 setup keep-state :default
00700 0 0 set 0 allow tcp from 203.0.113.10 to me 4510 setup keep-state :default
00800 0 0 set 0 allow tcp from 203.0.113.10 to me 4512 setup keep-state :default
00900 0 0 set 0 allow tcp from 203.0.113.10 to me 4514 setup keep-state :default
01000 1 60 set 0 skipto 1500 tcp from 203.0.113.10 to me
01000 0 0 set 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
01500 1 60 set 0 skipto 2000 tcp from 203.0.113.10 to me
01600 0 0 set 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
02000 1 60 set 0 skipto 2500 tcp from 203.0.113.10 to me
02100 0 0 set 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
02500 1 60 set 0 skipto 3000 tcp from 203.0.113.10 to me
02600 0 0 set 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
03000 8 475 set 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
65535 0 0 set 31 deny ip from any to any

See the section on Lists for additional caveats.

3.3.13. Divert

The divert mechanism in ipfw allows ipfw to pull packets into user space for programmatic
purposes. The divert rule snatches the packet and presents it to a divert(4) socket, a special socket
type that can be created from an external program. See the divert.c program at the end of Appendix
B for the sample program used for this book. Copy the divert.c program onto the firewall VM from
the host and compile it:

Copy divert.c from the host:
cd /root/bin
scp user@host:~/ipfw-primer/ipfw/VM_CODE/divert.c .

Compile it:
make divert LDFLAGS=-lutil

The code should compile cleanly. If it does not, examine the file closely to ensure it was copied
correctly and retry the above command.

Divert sockets can be used as the basis for many specialized applications such as packet
examination, in-flight packet modification, experimental routing techniques, etc. The program
shown here simply reads from the socket and dumps the contents of the packet in hex and ASCII. It

53

https://man.freebsd.org/cgi/man.cgi?query=divert&sektion=4&format=html

then writes the packet back into the divert socket.

To work with the divert keyword, the divert(4) packet diversion mechanism has to be compiled
into the kernel or loaded at runtime:

kldload ipfw
kldload ipdivert

This loads the ipfw firewall kernel module and the ipdivert kernel module which provides
divert(4) functionality.


Once loaded, the ipdivert.ko module cannot be unloaded. A firewall reboot is
required to remove the ipdivert.ko module.

Once this is done, an application can open a divert(4) socket and process packets.

./divert
Opening divert on port 700

... (see below)

In another window, run netstat(1) to see the divert socket:

netstat -an | more
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 *.22 *.* LISTEN
tcp6 0 0 *.22 *.* LISTEN
udp4 0 0 *.514 *.*
udp6 0 0 *.514 *.*
div4 0 0 *.700 *.*
Active UNIX domain sockets
Address Type Recv-Q Send-Q Inode Conn
Refs Nextref Addr
fffff80003b83000 stream 0 0 fffff80003cac5a0 0
0 0 /var/run/devd.pipe
fffff80003baf800 dgram 0 0 0 fffff80003bafc00
0 fff
...

To examine the divert operation, first create a suitable ruleset:

ipfw add 700 divert 700 ip from any to any
#
ipfw add 1000 allow udp from 203.0.113.10 to me
01000 allow udp from 203.0.113.10 to me

54

https://man.freebsd.org/cgi/man.cgi?query=divert&sektion=4&format=html
https://man.freebsd.org/cgi/man.cgi?query=divert&sektion=4&format=html
https://man.freebsd.org/cgi/man.cgi?query=divert&sektion=4&format=html
https://man.freebsd.org/cgi/man.cgi?query=netstat&sektion=1&format=html

#
ipfw add 1100 allow udp from me to 203.0.113.10
01100 allow udp from me to 203.0.113.10

The syntax is a bit odd in this case. The divert keyword takes a numeric argument that functions as
the divert object. This is similar syntax to pipes, queues, and NAT (network address translation)
rules which are discussed later.

A common convention, though not required, is to make the divert port the same number as the
rule number in the ruleset. Whatever the rule number, when the packet is diverted and processed,
and then returned to ipfw, the firewall picks up the packet at the divert rule number, plus one -
that is, the next rule.

ipfw list
00700 divert 700 ip from any to any
01000 allow udp from 203.0.113.10 to me
01100 allow udp from me to 203.0.113.10
65535 deny ip from any to any

Examine the ruleset above. The packet is diverted to a divert socket, port 700 at the first rule. When
it is returned from the divert.c program, it renters the ruleset at rule 1000. The ruleset allows UDP
packets from and to the external1 VM.

To test, set up the firewall VM host to run userv3.sh and the external1 VM host to run ucon.sh
5656. This results in the following expected output from the divert program:

./divert
Opening divert on port 700
203.0.113.10:51417 -> 203.0.113.50:5656
0000 45 00 00 46 a9 0c 00 00 40 11 65 3e ac 10 0a 0a	E..F....@.e>....
0010 ac 10 0a 32 c8 d9 16 18 00 32 a2 eb 55 44 50 20	...2.....2..UDP
0020 70 61 63 6b 65 74 20 66 72 6f 6d 20 5b 31 37 32	packet from [172
0030 2e 31 36 2e 31 30 2e 31 30 5d 2c 5b 35 36 35 36	.16.10.10],[5656
0040 5d 2c 5b 34 5d 0a],[4].

And the output from userv3.sh also shows on the firewall console:

sh userv3.sh
Starting UDP listeners on [5656],[5657],[5658]
UDP communication from [203.0.113.10],[5656],[1]

Next, shut down the userv3.sh services on the firewall VM. The incoming packets find no open
port and are rejected by the firewall VM host. However, they still go through the divert socket:

./divert
Opening divert on port 700

55

203.0.113.10:26058 -> 203.0.113.50:5656
0000 45 00 00 47 a9 12 00 00 40 11 65 37 ac 10 0a 0a	E..G....@.e7....
0010 ac 10 0a 32 65 ca 16 18 00 33 28 a9 55 44 50 20	...2e....3(.UDP
0020 70 61 63 6b 65 74 20 66 72 6f 6d 20 5b 31 37 32	packet from [172
0030 2e 31 36 2e 31 30 2e 31 30 5d 2c 5b 35 36 35 36	.16.10.10],[5656
0040 5d 2c 5b 31 30 5d 0a],[10].
203.0.113.50:771 -> 203.0.113.10:27038	
0000 45 00 00 63 3a 61 00 00 40 01 65 37 ac 10 0a 32	E..c:a..@.e7...2
0010 ac 10 0a 0a 03 03 69 9e 00 00 00 00 45 00 00 47i.....E..G
0020 a9 12 00 00 40 11 65 37 ac 10 0a 0a ac 10 0a 32@.e7.......2
0030 65 ca 16 18 00 33 28 a9 55 44 50 20 70 61 63 6b	e....3(.UDP pack
0040 65 74 20 66 72 6f 6d 20 5b 31 37 32 2e 31 36 2e	et from [172.16.
0050 31 30 2e 31 30 5d 2c 5b 35 36 35 36 5d 2c 5b 31	10.10],[5656],[1
0060 30 5d 0a	0].
divert: sendto: Permission denied

The last output line, "Permission denied", is because the kernel, faced with a packet and no port to
send it to, instead sends an ICMP port unreachable response back to the sender. The kernel tries to
send the ICMP packet back out the network interface, but there is no ipfw rule for it through the
firewall - thus "Permission denied". The packet is dropped.

To fix, add a rule for ICMP traffic in either direction:

ipfw list
00700 divert 700 ip from any to any
00800 allow icmp from any to any
01000 allow udp from 203.0.113.10 to me
01100 allow udp from me to 203.0.113.10
65535 deny ip from any to any

The divert operation now works as expected and the packet re-enters the firewall after rule 700.
The next rule (800) permits ICMP in either direction and the packet is sent back to the source host.
In the listings below, the ucon.sh script was run for 5 cycles, and after cycle #3, the firewall
userv3.sh script was shut down.

The remaining two cycles result in an ICMP message being returned back to the external1 VM:

./divert
Opening divert on port 700
203.0.113.10:36083 -> 203.0.113.50:5656
0000 45 00 00 46 a9 20 00 00 40 11 65 2a ac 10 0a 0a	E..F. ..@.e*....
0010 ac 10 0a 32 8c f3 16 18 00 32 de d4 55 44 50 20	...2.....2..UDP
0020 70 61 63 6b 65 74 20 66 72 6f 6d 20 5b 31 37 32	packet from [172
0030 2e 31 36 2e 31 30 2e 31 30 5d 2c 5b 35 36 35 36	.16.10.10],[5656
0040 5d 2c 5b 31 5d 0a],[1].
203.0.113.10:25662 -> 203.0.113.50:5656	
0000 45 00 00 46 a9 21 00 00 40 11 65 29 ac 10 0a 0a	E..F.!..@.e)....
0010 ac 10 0a 32 64 3e 16 18 00 32 07 89 55 44 50 20	...2d>...2..UDP

56

0020 70 61 63 6b 65 74 20 66 72 6f 6d 20 5b 31 37 32	packet from [172
0030 2e 31 36 2e 31 30 2e 31 30 5d 2c 5b 35 36 35 36	.16.10.10],[5656
0040 5d 2c 5b 32 5d 0a],[2].
203.0.113.10:40345 -> 203.0.113.50:5656	
0000 45 00 00 46 a9 22 00 00 40 11 65 28 ac 10 0a 0a	E..F."..@.e(....
0010 ac 10 0a 32 9d 99 16 18 00 32 ce 2c 55 44 50 20	...2.....2.,UDP
0020 70 61 63 6b 65 74 20 66 72 6f 6d 20 5b 31 37 32	packet from [172
0030 2e 31 36 2e 31 30 2e 31 30 5d 2c 5b 35 36 35 36	.16.10.10],[5656
0040 5d 2c 5b 33 5d 0a],[3].
203.0.113.10:53482 -> 203.0.113.50:5656	
0000 45 00 00 46 a9 23 00 00 40 11 65 27 ac 10 0a 0a	E..F.x..@.e'....
0010 ac 10 0a 32 d0 ea 16 18 00 32 9a da 55 44 50 20	...2.....2..UDP
0020 70 61 63 6b 65 74 20 66 72 6f 6d 20 5b 31 37 32	packet from [172
0030 2e 31 36 2e 31 30 2e 31 30 5d 2c 5b 35 36 35 36	.16.10.10],[5656
0040 5d 2c 5b 34 5d 0a],[4].
203.0.113.50:771 -> 203.0.113.10:27037 (ICMP packet)	
0000 45 00 00 62 3a 68 00 00 40 01 65 27 ac 10 0a 32	E..b:h..@.e'...2
0010 ac 10 0a 0a 03 03 69 9d 00 00 00 00 45 00 00 46i.....E..F
0020 a9 23 00 00 40 11 65 27 ac 10 0a 0a ac 10 0a 32	.x..@.e'.......2
0030 d0 ea 16 18 00 32 9a da 55 44 50 20 70 61 63 6b2..UDP pack
0040 65 74 20 66 72 6f 6d 20 5b 31 37 32 2e 31 36 2e	et from [172.16.
0050 31 30 2e 31 30 5d 2c 5b 35 36 35 36 5d 2c 5b 34	10.10],[5656],[4
0060 5d 0a].
203.0.113.10:35359 -> 203.0.113.50:5656	
0000 45 00 00 46 a9 24 00 00 40 11 65 26 ac 10 0a 0a	E..F.$..@.e&....
0010 ac 10 0a 32 8a 1f 16 18 00 32 e1 a4 55 44 50 20	...2.....2..UDP
0020 70 61 63 6b 65 74 20 66 72 6f 6d 20 5b 31 37 32	packet from [172
0030 2e 31 36 2e 31 30 2e 31 30 5d 2c 5b 35 36 35 36	.16.10.10],[5656
0040 5d 2c 5b 35 5d 0a],[5].
203.0.113.50:771 -> 203.0.113.10:27037 (ICMP packet)	
0000 45 00 00 62 3a 69 00 00 40 01 65 26 ac 10 0a 32	E..b:i..@.e&...2
0010 ac 10 0a 0a 03 03 69 9d 00 00 00 00 45 00 00 46i.....E..F
0020 a9 24 00 00 40 11 65 26 ac 10 0a 0a ac 10 0a 32	.$..@.e&.......2
0030 8a 1f 16 18 00 32 e1 a4 55 44 50 20 70 61 63 6b2..UDP pack
0040 65 74 20 66 72 6f 6d 20 5b 31 37 32 2e 31 36 2e	et from [172.16.
0050 31 30 2e 31 30 5d 2c 5b 35 36 35 36 5d 2c 5b 35	10.10],[5656],[5
0060 5d 0a].
^C

Note the two icmp packets logged by rule 800:

ipfw show
00700 19 2466 divert 700 ip from any to any
00800 2 196 allow icmp from any to any
01000 5 350 allow udp from 203.0.113.10 to me
01100 0 0 allow udp from me to 203.0.113.10
65535 477 114991 deny ip from any to any

General notes on the divert action:

57

• The ipdivert.ko kernel module must be loaded or compiled into the kernel to create a divert
rule, and thus to use divert(4) sockets.

• The ipdivert.ko kernel module cannot be unloaded. Restart the VM to remove the ipdivert.ko
kernel module.

• It is not possible to create a rule with a divert port of 0 or 65535. The port number must be
between 1 and 65534 (inclusive).

• If creating a rule with a divert port on rule 65534, the returning packet will restart firewall rule
processing at the default rule, 65535, which cannot be changed.

• A divert rule can be created for any protocol in /etc/protocols.

• The same divert port can be used for multiple rules.

• After returning from a divert rule, if the next rule is in another set, processing will continue
with that rule unless the set is disabled. If disabled, it will skip to the next rule in any set that is
not disabled.

General notes on creating the divert socket:

• Only root can create a divert socket.

• Opening a divert socket on port 0 or port 65536 results in a random divert port number.

• Opening a divert socket on port 65535 is permitted, but not advised.

• Opening a divert port greater than 65536 or less than 0 results in a positive port number
modulo 65536.

• As with other sockets, it is not possible to open two divert sockets on the same port number.
However, it is possible to open a divert socket on a port already in use for any protocols based
on IPv4 or IPv6.

3.3.14. Other Protocols

Any protocol in /etc/protocols may be used in a rule.

ipfw add 1000 allow ospf from any to me
ipfw add 2000 allow chaos from any to me
etc.

3.3.15. Limit

ipfw can restrict the number of active connections with the limit option. This option allows for
specifying a parameter in the rule that is regarded as a flow element, that is, one of src-addr, src-
port, dst-addr, or dst-port. In addition, the limit keyword takes a value, N, that is the maximum
number of connections desired:

ipfw add 1000 allow udp from any to me dst-port 5656-5658 limit src-addr 5
ipfw add 1100 count udp from any to me

58

https://man.freebsd.org/cgi/man.cgi?query=divert&sektion=4&format=html

Concurrent connections via TCP, UDP, ICMP, or any protocol can be limited in this way.

ipfw creates a dynamic rule for each connection allowed by the rule. When the maximum number
of connections is reached, additional packets are considered no longer matched and are dropped by
the rule after being counted, and the search terminates.

To test, write the following simple script on the external1 VM to flood UDP packets at the firewall
VM running sh userv3.sh:

#!/bin/sh

export NUM=1
for i in `jot -r 500 5656 5658 1`
do
 echo "hello [${NUM}] to port [${i}]" | ncat -u 203.0.113.50 ${i}
 NUM=expr $NUM + 1
done

On the firewall VM, ipfw starts creating dynamic rules as soon as the first matching packet is
received. Additional dynamic rules, up to the limit number are created. Each UDP based dynamic
rule has a default 10 second lifetime, controlled by the sysctl node net.inet.ip.fw.dyn_udp_lifetime.
As they expire under the limit value, space for additional connections is created. The number of
open dynamic rules at any point in time can be viewed with the sysctl node
net.inet.ip.fw.dyn_count.

View the dynamic rules with:

ipfw -SaD list
00500 0 0 check-state :default
01000 10 531 allow udp from any to me 5656-5658 limit src-addr 5 :default
65535 0 0 deny ip from any to any
Dynamic rules (4 560):
01000 1 53 (8s) LIMIT udp 203.0.113.10 23755 <-> 203.0.113.50 5657 :default
01000 1 53 (8s) LIMIT udp 203.0.113.10 30144 <-> 203.0.113.50 5656 :default
01000 0 0 (4s) PARENT 3 udp 203.0.113.10 0 <-> 0.0.0.0 0 :default
01000 1 53 (8s) LIMIT udp 203.0.113.10 22722 <-> 203.0.113.50 5658 :default


Running cmdwatch -n1 ipfw -SaD list on the firewall VM will show the list of
rules grow and shrink in real time.

It is useful to experiment with the sysctl net.inet.ip.fw.dyn_udp_lifetime and see its effect on
net.inet.ip.fw.dyn_count. By adjusting the net.inet.ip.fw.dyn_udp_lifetime value during a network
packet flood (like that above), it is possible to watch how the ipfw limit rule blocked traffic through
the firewall.

Here is the result of a sample run. Note the missing connections due to a limit restriction:

59

...
hello [19] to port [5657]
hello [20] to port [5656]
hello [21] to port [5656]
hello [33] to port [5657]
hello [34] to port [5656]
hello [35] to port [5657]
hello [36] to port [5657]
hello [37] to port [5657]
hello [48] to port [5657]
hello [50] to port [5657]
hello [51] to port [5656]
hello [52] to port [5657]
hello [53] to port [5656]
hello [64] to port [5657]
...

3.3.16. Call and Return

The call and return actions allow ipfw to change ruleset processing order by jumping to a rule
number elsewhere in the ruleset. If the rules at that location contain a return action, processing
will jump back to the statement immediately after the original call statement. In practice, this acts
like a program function call, or as ipfw(8) notes, like an assembly language subroutine.

Creating a new ruleset with call and return actions:

#
ipfw add 500 check-state
00500 check-state :default
#
ipfw add 1000 call 20000 udp from 203.0.113.10 to me 5656
01000 call 20000 udp from 203.0.113.10 to me 5656
#
ipfw add 1100 count udp from 203.0.113.10 to me
01100 count udp from 203.0.113.10 to me
#
ipfw add 1200 allow udp from 203.0.113.10 to me 5656
01200 allow udp from 203.0.113.10 to me 5656
#
ipfw add 20000 count udp from 203.0.113.10 to me
20000 count udp from 203.0.113.10 to me
#
ipfw add 21000 return via any
21000 return
#
ipfw -a list
00500 0 0 check-state :default
01000 0 0 call 20000 udp from 203.0.113.10 to me 5656
01100 0 0 count udp from 203.0.113.10 to me

60

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

01200 0 0 allow udp from 203.0.113.10 to me 5656
20000 0 0 count udp from 203.0.113.10 to me
21000 0 0 return
65535 0 0 deny ip from any to any

As noted in the man page, some extra syntactic sugar on the return statement is required:

ipfw add 21000 return via any

In this example several count statements are used to try to trace ruleset processing.

To test, have the firewall VM host startup userv3.sh. After the external1 VM uses ucon.sh 5656 to
send a single udp packet, the count list looks like this:

ipfw -a list
00500 0 0 check-state :default
01000 1 70 call 20000 udp from 203.0.113.10 to me 5656
01100 1 70 count udp from 203.0.113.10 to me
01200 1 70 allow udp from 203.0.113.10 to me 5656
20000 1 70 count udp from 203.0.113.10 to me
21000 1 70 return via any
65535 0 0 deny ip from any to any

The packet was matched at rule 1000 where it encountered a call action to jump to rule 20000
where it was then matched. The next rule was a matched return action at rule 21000. Returning to
the rule after the call action, it matched a count action at 1100, then matched an allow action at
1200 where it was sent through to the application layer and was received by userv3.sh.

If the return action at rule 21000 is removed and the test is re-run, the counts look much different.
(First, ipfw zero and ipfw zero 65535 to reset all counters.)

ipfw -a list
00500 0 0 check-state :default
01000 1 70 call 20000 udp from 203.0.113.10 to me 5656
01100 0 0 count udp from 203.0.113.10 to me
01200 0 0 allow udp from 203.0.113.10 to me 5656
20000 1 70 count udp from 203.0.113.10 to me
65535 1 70 deny ip from any to any

Without a return at rule 21000, the only rule left is the default deny rule, and there is nothing
received by userv3.sh.


Because ipfw can jump both forward and backward with the call action, it is
possible to create an endless loop.

61

This example creates an endless loop with an incorrect call rule:

#
ipfw -a list
01000 0 0 count udp from 203.0.113.10 to me
05000 0 0 check-state :default
06000 0 0 call 1000 udp from 203.0.113.10 to me 5656
07000 0 0 count udp from 203.0.113.10 to me
65535 0 0 deny ip from any to any

This example is missing a return action. This creates a loop. ipfw eventually figures out that a loop
exists, and breaks out at the next call action with the diagnostic:

ipfw: call stack error, go to next rule


ipfw does its best to get your attention for this error. The above diagnostic shows
up on the console, in any console log, and in the /var/log/messages file regardless
of the state of sysctl net.inet.ip.fw.verbose.

Unfortunately, ipfw does not currently note where the missing return action is or which rule it
went to next.

It is possible to pick up a clue by watching the rule counts. Below is the rule count for this errant
ruleset after just one packet was received from the external1 VM:

ipfw -a list
01000 17 1207 count udp from 203.0.113.10 to me
05000 0 0 check-state :default
06000 16 1136 call 1000 udp from 203.0.113.10 to me 5656
07000 1 71 count udp from 203.0.113.10 to me
65535 1 71 deny ip from any to any

This shows that ipfw went around this call loop 16 times before throwing an error.

For TCP connections, call and return operate almost the same. Below is a ruleset with TCP instead of
UDP for the desired protocol and including the required setup and keep-state keywords:

ipfw -a list
00500 0 0 check-state :default
01000 0 0 call 20000 tcp from 203.0.113.10 to me 5656
01100 0 0 count tcp from 203.0.113.10 to me
02000 0 0 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
20000 0 0 count tcp from 203.0.113.10 to me
21000 0 0 return
65535 0 0 deny ip from any to any

62

After the connection is successfully made from external1, the observed counts are:

ipfw -a list
00500 0 0 check-state :default
01000 1 60 call 20000 tcp from 203.0.113.10 to me 5656
01100 1 60 count tcp from 203.0.113.10 to me
02000 8 479 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
20000 1 60 count tcp from 203.0.113.10 to me
21000 1 60 return
65535 0 0 deny ip from any to any

The difference in rule counts is due to dynamic rules created by the setup and keep-state
keywords on rule 2000. Counts can also be shown with the -d command line parameter. The
numbers below are from just the initial 3-way handshake:

ipfw -ad list
00500 0 0 check-state :default
01000 1 60 call 20000 tcp from 203.0.113.10 to me 5656
01100 1 60 count tcp from 203.0.113.10 to me
02000 5 276 allow tcp from 203.0.113.10 to me 5656 setup keep-state :default
20000 1 60 count tcp from 203.0.113.10 to me
21000 1 60 return
65535 0 0 deny ip from any to any
Dynamic rules (1 152):
02000 5 276 (296s) STATE tcp 203.0.113.10 19179 <-> 203.0.113.50 5656 :default

The above numbers indicate that the 3-way handshake occurred during the dynamic rule setup.

General notes on call and return:

• ipfw allows a call out to an address either before or after the current rule.

• There must be a return for every call.

• call / return pairs can be nested up to 16 levels deep. If ipfw sees one more call rule, it will
throw the "call stack error, go to next rule" error and continue with the next rule.

• Similar to skip-to, a call to rule 0 or to a value greater than 65534, causes ipfw to throw an
error.

• Similar also to sets, if a call is made to a target rule in a set that is disabled, the call will land on
the next rule in any non-disabled set and processing continues from there.

• If a return is encountered when no call has been made, the return rule is ignored and
processing continues with the next rule.

3.3.17. Using uid and gid in rules

An interesting capability of ipfw is its ability to match packets on Unix uid and gid values. Network
packets themselves have no inherent ownership, so where does this capability come from? Answer
- it comes from the applications that are the source and destination of those packets.

63

The new ruleset below is a simple example to examine this capability. First, locate or add a user
(here 'quarven') if needed.

Then, note the syntax needed for uid / gid matching:

grep quarven /etc/passwd
quarven:*:1002:1002:Quarven:/home/quarven:/bin/sh

Copy userv.sh to user quarven home directory
cp ~/bin/userv.sh /home/quarven

Now use userid 'quarven' in an ipfw rule:

ipfw add 700 allow udp from 203.0.113.10 to me uid quarven
00700 allow udp from 203.0.113.10 to me uid quarven
#
ipfw show
00700 0 0 allow udp from 203.0.113.10 to me uid quarven
65535 0 0 deny ip from any to any

Next, login as user 'quarven' and run the script ~/userv.sh 5656. Then switch to the external1 VM
and run echo "hello there" | ncat -u 203.0.113.50 5656. The results should appear on the console
running the userv.sh script.

The results are shown below.

quarven@firewall:~ $ /bin/sh userv.sh 5656
PORT1 = [5656]
Starting UDP listener on [203.0.113.50],[5656]
hello there
^Cquarven@firewall:~ $

This works because the instance of userv.sh is run under the uid quarven as shown below:

Show the user information for the userv.sh instance:

root@firewall:~ # ps -o user -xl -U quarven
USER UID PID PPID C PRI NI VSZ RSS MWCHAN STAT TT TIME COMMAND
quarven 1002 4256 83703 0 61 0 13380 2908 pause I+ v0 0:00.03 sh userv.sh 5656
quarven 1002 6878 4256 0 61 0 13400 2344 select I+ v0 0:00.02 nc -l -k -u
203.0.113.50 5656
quarven 1002 83703 83431 0 20 0 13380 3168 wait I v0 0:00.10 -sh (sh)

ipfw has matched an incoming network packet to a program owned by a userid. If the rule is
changed to another userid, even root, the match will not succeed and the packet will be picked up
by the default rule. Likewise, if the userv.sh script is run under another user, even root, the match
will not succeed.

64



It is sometimes necessary to immediately shut down all IP traffic to or from a
certain user. This capability is can be used for that purpose. Note however, that the
deny rule below must come before any check-state rule to catch traffic that may
be otherwise allowed by a dynamic rule.

ipfw add 50 deny ip from any to any uid quarven
ipfw add 100 check-state

Note also the item about ICMP traffic in the "General Notes" below.

General Notes on Using uid and gid:

• The gid keyword works in an identical fashion to uid described above.

• If using a name as the uid or gid, the name must exist in the indicated system file.

• Ranges and lists of uids or gids are not allowed. For example, ipfw does not allow "… uid
tom,dick,harry" or "… uid 1000-1002".

• Outbound traffic works in a similar way, just reversing the source and destination.

• Denied traffic will generally have an indication of "<application>: sendto: Permission denied"

• ICMP traffic cannot be reliably filtered using uid/gid. This is a known limitation.

• As noted in ipfw(8), some contexts such as initial incoming SYN packets, may have no uid/gid
associated with them.

• Programs using setuid(2) system calls may not behave as expected, though it may be possible to
set the uid/gid to the effective id if it can be determined.

• Using uid/gid keywords for matching is resource intensive and should be used sparingly if at
all.

3.4. Lookup Tables

Lookup tables are a versatile feature of many firewall systems, including ipfw. A lookup table is a
virtual container that holds tuples of elements, one of which is a key that functions as a fast lookup
feature. Using a key provided by a rule, ipfw can quickly determine if the element is in the table. If
it is, that portion of the rule is matched the value associated with the key is used according to the
rule.

Lookup tables are a powerful feature of ipfw and useful in many situations.

ipfw provides five types of lookup tables:

• Address tables (addr) - These tables hold addresses that ipfw can rapidly find with an address
as a key. If the address is matched the lookup is considered matched and used by the associated
rule. This table type takes an additional keyword 'valtype' that can be used to specify IPv4
addresses or IPv6 addresses.

65

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

• Interface tables (iface) - These tables hold interface names. Each entry is the name of an
interface. Note that wildcards such as em* are not supported.

• Number tables (number) - These tables are used for protocols, ports, uids/gids, or jail ids.
Entries are 32 bit unsigned integers. Ranges (for example, 1234-5678) are not supported.

• Flow tables (flow) - These tables contain flow type suboptions that are used in looking up
existing traffic flows.

• MAC - A MAC address type table holds media access control (MAC) addresses as an address with
optional mask length. The mask length defaults to 48 bits if not otherwise specified.

3.4.1. Creating Lookup Tables

All tables must be created before they can be referenced by a rule. Note that the commands to
manage tables do not have line numbers - they are independent shell commands that exist outside
the ruleset.

ipfw table foo create

By default, the ipfw table create command creates tables of type addr. Table names share the
same namespace and so must be unique even among tables of different types.

To specify other types, add the type keyword:

ipfw table bar create type iface
#
ipfw table baz create type flow
#
ipfw table bop create type number


Previously, when creating a table of type number, a bug existed that required an
algorithm option such as number:array. This bug was fixed and documented here.

To see all tables, use the list subcommand to show the table and any contents. Shown below, all
four table types are created and one entry is added to each table:

ipfw table all list
#
ipfw table foo create type addr
ipfw table foo add 192.168.1.100 33
added: 192.168.1.100/32 33
#
ipfw table bar create type iface
ipfw table bar add em0 33
added: em0 33
#
ipfw table baz create type number

66

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=233072#c1

ipfw table baz add 9999 33
added: 9999 33
#
ipfw table bop create type flow
ipfw table bop add 203.0.113.10,192.168.1.100 33
ignored: 33
ipfw: Adding record failed: Invalid argument
#
ipfw table bop destroy
#
ipfw table bop create type flow:src-ip,dst-ip
ipfw table bop add 203.0.113.10,192.168.1.100 33
added: 203.0.113.10,192.168.1.100 33
#
ipfw table bip create type mac
ipfw table bit add 58:9c:fc:01:02:03 33
added: 58:9c:fc:01:02:03/48 33
#
ipfw table all list
--- table(bar), set(0) ---
em0 33
--- table(baz), set(0) ---
9999 33
--- table(bip), set(0) ---
58:9c:fc:01:02:03/48 33
--- table(bop), set(0) ---
203.0.113.10,192.168.1.100 33
--- table(foo), set(0) ---
192.168.1.100/32 33

Note the error on the flow table above. Flow tables take an explicit flow specification (discussed
below) when they are created. When trying to add an entry to a flow table that does not match the
flow specification, ipfw throws an error.



Note that the output of ipfw table all list is ordered by table name, not table type.
This is worth remembering when using many tables of different types. Also, the
command does not actually display the table type. Use the command ipfw table
<tablename> info to display the table type.

In all the examples above a key and a value were added to each table. The key was added according
to the table type (addr, iface, etc.) The values above, all set to the integer value 33, are just
placeholders in the examples. The value for each key is whatever makes sense for the firewall
administrator.

"Whatever makes sense" depends on how the table will be used. ipfw(8) identifies some 12 different
uses for table values - skipto rule number to skip to, pipe number, fib number, nat number to
jump to, dscp value to match or set, tag number to match or set, divert port number to divert
traffic to, netgraph hook number to move packet to, limit maximum number of connections, ipf4
ipv4 next hop to forward packets to, ipv6 ipv6 next hop to forward packets to, mark value to match

67

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

or set.

Some of these keywords have already been studied, and will return to assist with table operations.

Tables can be removed one at a time with the destroy subcommand, provided the table is not used
in any rule:

ipfw table bar destroy

or removed all at once by specifying the special name all:

ipfw table all destroy


Note that there is no confirmation with the ipfw table all destroy command as
there is with the ipfw flush command, so make sure that is the intended action.



A table cannot be destroyed if it is used in a rule.

 # *ipfw table all destroy*
 ipfw: failed to destroy table(redhosts) in set 0: Device busy

Delete the rule using the table, then delete the table.

3.4.2. Using Tables in Rules

To begin using tables in rules, it is first necessary to understand the use of the word tablearg which
is frequently found in ipfw(8).

3.4.2.1. Understanding the Word tablearg

A tablearg is a value that is the result of a table lookup using a key supplied by a field in a packet.
Which field depends on the table type, as discussed above.

The term tablearg is used to show where in the rule the retrieved value will be applied.

68

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

Figure 12. tablearg Keyword Used in a Rule

For a rule with a tablearg keyword, ipfw

1. Looks up the key in the identified table. The key is supplied by one or more fields in the packet
itself.

2. Applies the value associated with that key in the table to replace the word tablearg.

Essentially

ipfw add 50 skipto tablearg ip from 'table(badhosts)' to any

becomes

ipfw add 50 skipto 65535 ip from 203.0.113.10 to any

if the from address in the packet is matched in the table.

If it is not matched, processing continues with the next rule.


From the ipfw(8) man page - The tablearg argument can be used with the
following actions: nat, pipe, queue, divert, tee, netgraph, ngtee, fwd, skipto,
setfib; wth action parameters: tag, untag; and with rule options: limit, tagged.

First Example

The first example is to use a table with the skipto keyword.

Consider a table of addresses of "bad hosts". If any such host were to try to connect to or through
the firewall, they should be denied. Since there is already a deny rule (the immutable rule at
65535), it is possible to load an address table with keys of hosts, and values of the deny rule, 65535:

First, on the firewall VM, create a table called badhosts, and populate it with the addresses of hosts
to be denied:

Restart ipfw:

69

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

kldunload ipfw
kldload ipfw

Create and populate the table:

ipfw table badhosts create type addr
ipfw table badhosts add 203.0.113.10/32 65535
added: 203.0.113.10/32 65535

Then create a rule that uses the table. For this use case, put the rule before the check-state rule,

ipfw add 50 skipto tablearg ip from 'table(badhosts)' to any
00050 skipto tablearg ip from table(badhosts) to any
#
ipfw add 100 check-state
#
ipfw add 1000 allow ip from any to any

Note the single quotes around the table(badhosts) entry to placate the shell:

To test, start up userv3.sh on the firewall VM:

sh userv3.sh
Starting UDP listeners on [5656],[5657],[5658]

And on the external1 VM (which should have address 203.0.113.10) , start up ucon.sh:

sh ucon.sh 5656
UDP communicationing [203.0.113.50],[5656],[1]

No communication should be seen on the firewall VM. The skipto rule matched the address in the
table, and the tablearg keyword was replaced with the default deny rule. This can be verified by
reviewing the counters with ipfw show.

However, by removing the entry for 203.0.113.10/32 from the badhosts table, the communications
succeed and reach the userv3.sh services listening on the firewall VM:

ipfw table badhosts delete 203.0.113.10
deleted: 203.0.113.10/32 0

Retrying the ucon.sh communications above will succeed.

It would be tempting to combine the previous two examples into something like:

70

ipfw add 1000 allow udp from 'table(badhosts)' to me dst-port 'table(badports)'
ipfw: invalid destination port table(badports)

but ipfw does not allow the use of more than one table in a rule.

However, instead of a second table keyword, it is possible to use the lookup keyword for the port:

A contrived example:

ipfw add 25 allow udp from 'table(badhosts)' to me lookup dst-port badports
00025 allow udp from table(badhosts) to me dst-ip lookup dst-port badports

While this does work, the better solution is to use the a flow table:

Unload and reload the ipfw kernel module for the next example, this time for "good hosts".

ipfw table goodflow create type flow:src-ip,dst-port
#
ipfw table goodflow add 203.0.113.10,5656
added: 203.0.113.10,5656 0
#
ipfw table goodflow add 203.0.113.10,5657
added: 203.0.113.10,5657 0
#
ipfw add 500 allow udp from any to me flow 'table(goodflow)'
00500 allow udp from any to me flow table(goodflow)

This gives the firewall admin much more granular control of exactly what host and what port to
match together. Startup the userv3.sh script on the firewall VM and note the results by trying sh
ucon.sh 5656, sh ucon.sh 5657, and sh ucon.sh 5658 from the external1 VM. The first two succeed,
while the third does not.

Using the valtype keyword for addr tables permits separate tables for IPv4 and IPv6:

Create the translation tables.
ipfw table T46 create type addr valtype ipv6
ipfw table T64 create type addr valtype ipv4

Second Example

The second example concerns using tables with the limit keyword. Recall that the limit keyword
limits the number of active connections at one time.

Reset ipfw by unloading and loading the ipfw.ko kernel module.

Now, consider an address table to keep track of addresses and limits like this:

71

Create a table named "limits".
ipfw table limits create type addr valtype limit
#
Assign a value of 23 to the address 203.0.113.10
ipfw table limits add 203.0.113.10 5
added: 203.0.113.10/32 5
#
Now add a limit rule for this address
ipfw add 1000 allow udp from 'table(limits)' to me limit src-addr tablearg
01000 allow udp from table(limits) to me limit src-addr tablearg :default
#
And add a rule to allow the traffic.
ipfw add 1100 allow udp from 'table(limits)' to me
#

The above rules have created a table named "limits" of tabletype addr and value type limit with one
entry, 203.0.113.10 with value 5. With rule 1000, all packets coming into the firewall will be looked
up in the table. If a packet from address 203.0.113.10 arrives, the lookup will succeed and the value
of "5" will be applied as the tablearg to the limit option for connections with that address.

Once this is set up, it is possible to change the limit value without changing the rule. The value can
be changed by deleting and re-adding the table entry.

Here is an example run of the previous limit script adapted for this example.

The higlighted sections show the when the firewall did not allow packets to pass because the limit
had been reached for the rule. Recall that the dynamic rules preventing packet transfer age out
after 10 seconds by default.

sh userv3.sh
Starting UDP listeners on [5656],[5657],[5658]
hello [1] to port [5657]
hello [2] to port [5658]
hello [3] to port [5656]
hello [4] to port [5656]
hello [5] to port [5656]
hello [23] to port [5658]
hello [25] to port [5656]
hello [26] to port [5658]
hello [27] to port [5657]
hello [28] to port [5656]
hello [47] to port [5656]
hello [48] to port [5658]
hello [49] to port [5656]
hello [50] to port [5658]
hello [51] to port [5656]
hello [67] to port [5657]
hello [69] to port [5658]
hello [70] to port [5657]

72

hello [71] to port [5657]
hello [72] to port [5657]
^C
#


An earlier version of this book noted a bug (Bug 284691) with this capability. The
bug was fixed in FreeBSD release 14.3.

3.4.2.2. More on flow tables

A flow table maintains a list of flows. A flow is a designation given to traffic between two
endpoints. The designation can be any subset of:

• src-ip

• src-port

• proto

• dst-ip

• dst-port

that makes sense in source → destination order. Examples include:

ipfw table zoo create type flow:src-ip # Creates a flow based on soure IP address
ipfw table zar create type flow:proto # Creates a flow based on just a protocol
ipfw table zaz create type flow:dst-ip # Creates a flow based on just the
desitination IP
ipfw table zop create type flow:dst-port # Creates a flow based on the destination
port

or with extra specificity:

ipfw table zip create type flow:src-ip,proto,dst-ip,dst-port # Flow based on all
four
ipfw table zim create type flow:src-ip,proto # Just source IP and protocol
ipfw table zam create type flow:src-ip,proto,dst-ip # Source IP, destination IP and
protocol
ipfw table zap create type flow:src-ip,dst-ip # Just IP address endpoints

Once the table is created for a flow, entries can be placed in the table provided they match the table
flow specification.

Matching these additions to the tables created above:

ipfw table zim add 192.168.200.30,tcp

would succeed, but

73

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=284691

ipfw table zip add 192.168.30.20,172.20.15.20

would fail because the flow specification for table zip is src-ip,proto,dst-ip,dst-port and neither
the protocol nor the destination port was given.

A correct flow specification for table zip would be something like:

ipfw table zip add 192.168.30.20,tcp,172.20.15.20,80

flow tables allow for precise definition of traffic between a source and a destination. Once in the
table, rules can be applied to commands allow, deny, divert, queue, etc. for modifying traffic flow.

General notes on all tables:

• Table names can be numeric or alphanumeric and can include only hyphen (-), underscore (_),
and period (.) as special characters.

• Maximum table name length is 63 characters.

• Tables names must be unique within a set. Tables can have the same name across different sets,
however any rules for tables in sets other than set 0, must include the set number. The sysctl
variable net.inet.ip.fw.tables_sets controls this behavior.

• The maximum number of tables across all sets is 65535. Practically however, the number is
controlled by the sysctl variable net.inet.ip.fw.tables_max. The default is 128.

• If a table is in use in a rule, it cannot be destroyed. The rule must be removed first, then the
table can be destroyed. However, a table can be flushed (ipfw table tablename flush) at
anytime.

• All table types survive an ipfw flush action, and table contents are not affected.

• Make table names as descriptive as possible to avoid confusion when used in rules. The names
used here (foo, bar, zip, zap, etc.) are just examples.

• As noted in the man page, if two tables are used in a rule, the result of the second (destination)
is used. Therefore avoid using two tables in a rule, or try using the lookup keyword instead.

Notes on specific table types:

• Address tables (addr)

◦ Address tables (addr) support IPv4 and IPv6 address types, and varying mask lengths
appropriate for each address type. The default mask length for IPv4 is 32 bits (/32) and the
default prefix for IPv6 is 128 bits (/128).

◦ Table lookups will return the most specific entry, so 203.0.113.20/32 is preferred over
203.0.113.0/24.

• Interface tables (iface)

◦ Interface tables store interface names as alphanumeric text. The text does not actually have
to match a current valid interface.

74

◦ Special characters in interface names can include any from the set

[-+_?,.!~@#%^&*()=;:/<>{}|]

Note however, that the shell may recognize some of these characters when adding and
during lookup, thus interfering with the table operation, and so special characters in
interface names should be avoided.

◦ The maximum key length is 15 characters. You can create an entry with a longer name and
ipfw will not throw an error, but the entry will be truncated to 15 characters.

◦ It is possible to add interface names consisting of Unicode characters, though support for
Unicode character sets in user terminals varies. For example, to add the interface named
"meλ" ("em ee lambda") with value 32 to table "myintf" you would type:

ipfw table myintf add emCtl+Shift+U 03BB 32

Note however, that it may not be possible to actually create the named interface.

◦ There is no support for interface ranges, for example em0-4, even though an interface
name "em0-4" can be entered.

• Number tables (number)

◦ Number tables support unsigned 32-bit integer types.

◦ Entries can be positive or negative. Negative entries perform unsigned ones complement
arithmetic, and positive numbers roll over from 4294967295 to 0.

◦ Any shell element that evaluates to a number can be used: shell variables that resolve to a
number ($MAILCHECK, $PPID), backtick operations such as expr 5 + $UID, id -u, date "+%s", and
special variables like $RANDOM in bash.

◦ As with other table types, ranges are not supported.

• Flow tables (flow)

◦ Flow tables describe network traffic based on the desired attributes. The best matches
include as much detail as possible: src-ip, proto, dst-ip, port. Including less than that may
make it difficult to add an element in the table:

▪ ipfw table foo create type flow:dst-port # Table based on just the destination port

▪ ipfw table foo add telnet # Fails to add!

◦ ipfw table bar create type flow:dst-ip,dst-port

◦ ipfw table bar add 203.0.113.10,5656

3.5. Stream Control Transport Protocol (SCTP)
A readable introduction to SCTP is found in Wikipedia - https://en.wikipedia.org/wiki/
Stream_Control_Transmission_Protocol#RFCs and ever more detail is found in the accompanying

75

https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol#RFCs
https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol#RFCs

RFCs.

3.5.1. SCTP Versions

As of FreeBSD 14.1, there are three different versions of SCTP - a "native" version, a "separate
portable" version, and a "userland" version.

• FreeBSD ships with the "native" version of the protocol, described in sctp(4). (This is actually the
reference implementation of SCTP initially developed on FreeBSD 7.) This version requires
loading the kernel module sctp.ko before use. Native SCTP uses the SCTP library on FreeBSD
which provides access to the various functions found in <netinet/sctp.h>. Developers can use the
features described in sctp(4) to develop SCTP applications based on the native protocol.

Then, there are a couple of notable packages regarding SCTP:

• libusrsctp “Portable SCTP userland stack” – This is a non-kernel implementation of the
protocol using “usrsctp_*” functions. It also provides UDP encapsulation as shown in the
Wireshark image below:

• sctplib “User-space implementation of the SCTP protocol RFC 4960” – This package is a re-
implementation of the native SCTP code that can function as a replacement for the default
installed code. It does not require the sctp.ko kernel module.


As noted in the BUGS section of sctp(4), the sctp.ko kernel module cannot be
unloaded. Restart FreeBSD to remove the module from the kernel.

Interestingly, the reference implementation for SCTP that was developed on FreeBSD 7 and has
been archived on GitHub at https://github.com/cyberroadie/sctp-examples. ipfw played a role in its
development and the vestiges of that development remain in the ipfw code base and in the
collection of sysctls that support it.

The following section studies the native SCTP protocol usage and the encapsulated usage with ipfw.

3.5.2. SCTP Protocol Operation

The image below shows a Wireshark view of a typical native SCTP association (connection):

Figure 13. Wireshark View of Native SCTP

Notice how there are two different interfaces involved with this transfer - 127.0.0.1, and
192.168.1.78. In fact, SCTP supports association setup and data exchange with multiple interfaces to

76

https://man.freebsd.org/cgi/man.cgi?query=sctp&sektion=4&format=html
https://man.freebsd.org/cgi/man.cgi?query=sctp&sektion=4&format=html
https://man.freebsd.org/cgi/man.cgi?query=sctp&sektion=4&format=html
https://github.com/cyberroadie/sctp-examples

a remote node. The RFC’s explain this capability in detail.

Also in this image, note the basic 4-way handshake - INIT, INIT_ACK, COOKIE_ECHO, and
COOKIE_ACK. Also shown are the HEARTBEAT, DATA, SACK (Stream Acknowledgement) messages,
and the shutdown sequence of SHUTDOWN, SHUTDOWN_ACK, and SHUTDOWN_COMPLETE.

Below is a view of netstat -an showing the display of a separate SCTP section containing all current
associations:

% netstat -an
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 *.22 *.* LISTEN
tcp6 0 0 *.22 *.* LISTEN
tcp4 0 0 127.0.0.1.631 *.* LISTEN
tcp6 0 0 ::1.631 *.* LISTEN
udp4 0 0 127.0.0.1.123 *.*
udp6 0 0 fe80::1%lo0.123 *.*
udp6 0 0 ::1.123 *.*
udp4 0 0 192.168.1.78.123 *.*
udp6 0 0 2600:1700:3901:4.123 *.*
udp6 0 0 fe80::3e97:eff:f.123 *.*
udp4 0 0 *.123 *.*
udp6 0 0 *.123 *.*
Active SCTP associations (including servers)
Proto Type Local Address Foreign Address (state)
sctp4 1to1 127.0.0.1.5000 127.0.0.1.42227 ESTABLISHED
 192.168.1.78.5000 192.168.1.78.42227
sctp4 1to1 127.0.0.1.42227 127.0.0.1.5000 ESTABLISHED
 192.168.1.78.42227 192.168.1.78.5000
sctp4 1to1 127.0.0.1.5000 LISTEN
 192.168.1.78.5000
Active UNIX domain sockets
Address Type Recv-Q Send-Q Inode Conn
Refs Nextref Addr
fffff8015575c000 stream 0 0 0 fffff80155758c00
0 0
. . .

Internally, the SCTP data packets look different from TCP and/or UDP packets. However, like those
two, SCTP has a protocol number (hexadecimal 0x84, decimal 132), source address, destination
address, and port numbers, so using ipfw with SCTP will be fairly straightforward.

Here’s a look at a typical packet:

77

Figure 14. Internal View of the SCTP INIT Data Packet

To study SCTP’s behavior with ipfw the client/server echo program, shown above, will be used,
along with a separate streaming application similar to the familiar chargen small server.

Also needed is the internal VM. If this VM has not yet been set up, do so now following the general
guidelines of the Qemu Setup section for details. Be sure to install all the required packages,
including tsctp.

3.5.3. Using the TSCTP Testing Tool on FreeBSD

A handy testing tool is the FreeBSD package tsctp. If this package was not previously installed,
install the package on the external1 and internal VMs. (Configure the VMs to access the Internet to
install the package. Refer to the Qemu Setup section for details.)

pkg install tsctp

This tool uses the native SCTP protocol version. To use, first load the sctp.ko kernel module on the
external1 and internal VMs:

kldload sctp.ko

Running the program is discussed below.

78

Figure 15. Setting Up to Test Native SCTP

To get started, on the FreeBSD host machine, initialize the bridge and tap devices to the
architecture shown in the figure above.

% cd ~/ipfw-primer/ipfw/HOST_SCRIPTS
% sudo /bin/sh mkbr.sh reset bridge0 tap1 tap4 bridge1 tap0 tap5

Then start the required VMs:

% /bin/sh runvm.sh firewall external1 internal

Then follow these steps:

1. Apply the addressing shown in the above figure and ensure connectivity with adjacent
interfaces, and with the opposite side interfaces (10.10.10.20 from the external1 VM and
203.0.113.10 from the internal VM).

2. The default route for the external1 VM should point to 203.0.113.50, and for the internal VM it
should point to 10.10.10.50.

79

3. Load the sctp.ko kernel module on the external1 and the internal VMs. This enables
communication via native SCTP on these VMs.

On the internal VM, run in server mode:

 # tsctp -L 127.0.0.1 -L 10.10.10.20 -p 1234

and on the external1 VM, run in client mode:

 # tsctp -L 203.0.113.10 -p 1234 -n 10 -l 1000 -V 10.10.10.20

Use tscp --help to get a list of the options and meanings.

The -V option will print a list of messages being send by the client.

The client program sends 10 messages (-n 10) to the server. Simple statistics are shown on both the
client and the server once the program terminates.

The above procedure has established SCTP communications across the firewall. The firewall VM
does not need to load the sctp.ko module. To the firewall VM, this is simply normal IP traffic.

Restart the client with -n 0, for unlimited messages. While normal SCTP traffic is established from
client to server, load ipfw on the firewall VM.

Traffic is immediately halted. Eventually, the client will recognize it has been disconnected. This
may take a couple of minutes. The disconnection is shown in the image below:

Figure 16. IPFW Firewall Disrupts SCTP Traffic

Creating suitable rules for SCTP traffic is quite similar to other rules performed in previous
examples.

root@firewall:~ # ipfw add 100 check-state
00100 check-state :default
root@firewall:~ #
root@firewall:~ # ipfw add 1000 allow sctp from 203.0.113.10 to 10.10.10.20
01000 allow sctp from 203.0.113.10 to 10.10.10.20
root@firewall:~ # ipfw add 2000 allow sctp from 10.10.10.20 to 203.0.113.10
02000 allow sctp from 10.10.10.20 to 203.0.113.10
root@firewall:~ #

80

root@firewall:~ # ipfw zero
Accounting cleared.
root@firewall:~ # ipfw zero 65535
Entry 65535 cleared.
root@firewall:~ #
root@firewall:~ # ipfw show
00100 0 0 check-state :default
01000 0 0 allow sctp from 203.0.113.10 to 10.10.10.20
02000 0 0 allow sctp from 10.10.10.20 to 203.0.113.10
65535 0 0 deny ip from any to any
root@firewall:~ #

One would think the "one-rule" version using setup and keep-state keywords would work, but it
does not. The "two-rule" version must be used.

Also, keep in mind that SCTP is typically used where there are multiple interfaces per association.
This example has used only one, but the principles are the same.

3.5.4. Downloading and Building usrsctp Programs

To test SCTP encapsulation with UDP, download and build the usrsctp kit. Follow this procedure to
download and build the programs for the usrsctp kit. On the external1 VM and the internal VM,
the procedure is the same.

For this procedure, reconfigure the external1 and internal VMs to access the Internet as described
in Appendix A. Then perform these steps:

pkg install git
pkg install cmake
mkdir /root/src
cd /root/src
git clone https://github.com/sctplab/usrsctp.git
mkdir tmp
cd tmp
cmake ../usrsctp
cmake --build .

Once finished, the test programs are located in /root/src/tmp/programs.

Now reconfigure external1 and internal VMs back to the architecture and addressing (including
default routes) in Using the TSCTP Testing Tool.

3.5.5. Encapsulated Echo Server and Client with IPFW

The figure below shows encapsulated usage of SCTP with the chargen_server_upcall program
running on the internal VM and the client_upcall program running on the external1 VM. The
output is similar to that of the chargen small server program.

81

 If the client doesn’t start right away, hit Enter one time.

Figure 17. SCTP Traffic Encapsulated in UDP Datagrams

All the data exchanged between the two systems was encapsulated in UDP datagrams as shown in
the figure below.

82

Figure 18. Wireshark View of UDP Encapsulation of SCTP

Any ipfw rules for this traffic only have to be concerned with UDP, not SCTP.

83

Chapter 4. IPFW Dummynet and Traffic
Shaping
FreeBSD’s dummynet is not a network for dummies. It is a sophisticated network traffic shaping
tool for bandwidth usage and scheduling algorithms. In this use of ipfw, the focus is not on ruleset
development, although rules are still used to select traffic to pass to dummynet objects. Instead, the
focus is on setting up a system to shape traffic flows. dummynet provides tools to model
scheduling, queuing, and similar tasks similar to the real-world Internet.

dummynet works with three main types of objects - a pipe, a queue, and a sched (short for
scheduler) which also happen to be the three keywords to now examine.

A pipe (not to be confused with a Unix pipe(2)!) is a model of a network link with a configurable
bandwidth, and propagation delay.

A queue is an abstraction used to implement packet scheduling using one of several different
scheduling algorithms. Packets sent to a queue are first grouped into flows according to a mask on a
5-tuple (protocol, source address, source port, destination address, destination port) specification.
Flows are then passed to the scheduler associated with the queue, and each flow uses scheduling
parameters (weight, bandwidth, etc.) as configured in the queue itself. A sched (scheduler) in turn
is connected to a pipe (an emulated link) and arbitrates the link’s bandwidth among backlogged
flows according to weights and to the features of the scheduling algorithm in use.

Network performance testing is a complex subject that can encompass many variables across many
different testing strategies. To understand the basics behind dummynet, it is not necessary to dive
into the deepest levels of network performance testing - only enough to understand how to use
dummynet. Also, these tests are restricted to using IP and TCP exclusively.

Setting Up for Traffic Measurement

Most of the examples in this section can be done with the architecture used in the original lab setup
in Chapter 2, copied here for reference:

84

Figure 19. IPFW Lab for dummynet Examples

Use this bridge and tap configuration on the FreeBSD host system:

% sudo /bin/sh mkbr.sh reset bridge0 tap0 tap1 tap2
% /bin/sh swim.sh # or scim.sh for screen(1)
% /bin/sh runvm.sh firewall external1 external2

Apply the correct addressing for each VM in this example.

Where necessary, additional virtual machines can be created and added to the bridge.

4.1. Measuring Default Throughput
The idea behind dummynet is that it lets one model and/or shape network speeds, available
bandwidth, and scheduling algorithms. But it is first necessary to know what the current transfer
speeds are for the current environment (QEMU virtual machines over a FreeBSD bridge). To find
out, here is a short detour to learn iperf3, the network bandwidth testing tool used to perform
simple transfer and bitrate calculations.

iperf3, can determine the effective throughput of data transfer for a network. Sometimes called
"goodput", this is the basic speed the user sees for transferring data across the network - the value
that is unencumbered by protocol type and overhead.

To use iperf3, ensure that the software is installed on both the firewall VM system, and the
external1 VM (and external2 and external3), and that ipfw on the firewall VM is disabled (#
kldunload ipfw).

The basic operation of iperf3 is as a client-server architecture, so on the external1 VM system, start
the iperf3 software in server mode:

85

iperf3 -s <--- run iperf3 in server mode

Server listening on 5201 (test #1)

 . . .

Then, on the firewall VM, run the client:

iperf3 -c 203.0.113.10 <--- connect to external1 server and send test data
Connecting to host 203.0.113.10, port 5201
[5] local 203.0.113.50 port 19359 connected to 203.0.113.10 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.03 sec 12.5 MBytes 102 Mbits/sec 0 1.07 MBytes
[5] 1.03-2.09 sec 13.8 MBytes 108 Mbits/sec 0 1.07 MBytes
[5] 2.09-3.07 sec 12.5 MBytes 107 Mbits/sec 0 1.07 MBytes
[5] 3.07-4.09 sec 12.5 MBytes 103 Mbits/sec 0 1.07 MBytes
[5] 4.09-5.08 sec 12.5 MBytes 106 Mbits/sec 0 1.07 MBytes
[5] 5.08-6.09 sec 12.5 MBytes 105 Mbits/sec 0 1.07 MBytes
[5] 6.09-7.07 sec 12.5 MBytes 107 Mbits/sec 0 1.07 MBytes
[5] 7.07-8.05 sec 12.5 MBytes 107 Mbits/sec 0 1.07 MBytes
[5] 8.05-9.04 sec 12.5 MBytes 106 Mbits/sec 0 1.07 MBytes
[5] 9.04-10.02 sec 12.5 MBytes 107 Mbits/sec 0 1.07 MBytes
- -
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.02 sec 126 MBytes 106 Mbits/sec 0 sender
[5] 0.00-10.02 sec 126 MBytes 106 Mbits/sec receiver

iperf Done.
#

A key test for measuring throughput is to send a file of data and measure the transfer speed. To
create the file, use jot(1) on the firewall VM:

jot -r -s "" 10000000 0 9 > A.bin

This command creates a file of random ASCII digits exactly 10,000,001 bytes long. (Note that it can
take anywhere from 30 seconds to two minutes to create the file on a QEMU virtual machine.)

To transfer the file to the server on the external1 VM use this command:

iperf3 -F A.bin -c 203.0.113.10 -t 10
Connecting to host 203.0.113.10, port 5201
[5] local 203.0.113.50 port 51657 connected to 203.0.113.10 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.04 sec 12.5 MBytes 101 Mbits/sec 0 490 KBytes
[5] 1.04-1.52 sec 5.81 MBytes 101 Mbits/sec 0 490 KBytes
- -

86

https://man.freebsd.org/cgi/man.cgi?query=jot&sektion=1&format=html

[ID] Interval Transfer Bitrate Retr
[5] 0.00-1.52 sec 18.3 MBytes 101 Mbits/sec 0 sender
 Sent 18.3 MByte / 18.3 MByte (100%) of A.bin
[5] 0.00-1.52 sec 18.3 MBytes 101 Mbits/sec receiver
iperf Done.
#

Running this command several times shows that a consistent average bitrate for throughput on this
system is about 101Mbits/second - or about 18.3 MBytes/second. (Your values will differ on your
local machine.)

There is now a baseline TCP-based "goodput" value for testing dummynet traffic shaping
commands.

4.2. IPFW Commands for Dummynet
To use dummynet, load the kernel module dummynet.ko in addition to the ipfw.ko module on the
firewall VM:

kldload ipfw
kldload dummynet
load_dn_sched dn_sched FIFO loaded
load_dn_sched dn_sched QFQ loaded
load_dn_sched dn_sched RR loaded
load_dn_sched dn_sched WF2Q+ loaded
load_dn_sched dn_sched PRIO loaded
load_dn_sched dn_sched FQ_CODEL loaded
load_dn_sched dn_sched FQ_PIE loaded
load_dn_aqm dn_aqm CODEL loaded
load_dn_aqm dn_aqm PIE loaded
#

dummynet announces the schedulers it is configured to use.

4.2.1. Simple Pipe Configuration

Recall that dummynet uses pipes, queues, and sched (schedulers) to shape traffic.

To see dummynet in action, create a pipe with limited bandwidth, and assign it to a rule matching
traffic to the external1 VM:

Load the ipfw kernel module if needed:
kldload ipfw
ipfw2 (+ipv6) initialized, divert loadable, nat loadable, default to deny, logging
disabled
#
ipfw pipe 1 config bw 300Kbit/s
ipfw pipe 1 show

87

00001: 300.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x0 0 buckets 0 active
#

The above output shows the pipe configration limiting bandwidth (bw) to 300Kbits/sec.


Recent versions of FreeBSD now use the command alias dnctl for configuration of
pipes, queues, and schedulers. See dnctl(8) for details.

Now add ipfw rules to send traffic between the firewall VM and the external1 VM through the
pipe:

ipfw add 100 check-state
00100 check-state :default
#
ipfw add 1000 pipe 1 ip from any to any
01000 pipe 1 ip from any to any
#
ipfw list
00100 check-state :default
01000 pipe 1 ip from any to any
65535 deny ip from any to any
#

By adding the matching phrase "ip from any to any" and assigning it to pipe 1, the firewall VM is
directed to send all ip-based traffic through pipe 1, now configured as a 300K bps link.

By re-running the basic file transfer command for iperf3 these difference take shape:

iperf3 -F A.bin -c 203.0.113.10 -t 10 --length 1460
Connecting to host 203.0.113.10, port 5201
[5] local 203.0.113.50 port 39558 connected to 203.0.113.10 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.01 sec 75.6 KBytes 612 Kbits/sec 0 25.6 KBytes
[5] 1.01-2.01 sec 41.3 KBytes 339 Kbits/sec 0 51.0 KBytes
[5] 2.01-3.01 sec 45.6 KBytes 374 Kbits/sec 0 62.3 KBytes
[5] 3.01-4.01 sec 27.1 KBytes 222 Kbits/sec 0 66.6 KBytes
[5] 4.01-5.01 sec 35.6 KBytes 292 Kbits/sec 0 66.6 KBytes
[5] 5.01-6.01 sec 44.2 KBytes 362 Kbits/sec 0 66.6 KBytes
[5] 6.01-7.01 sec 21.4 KBytes 175 Kbits/sec 0 66.6 KBytes
[5] 7.01-8.01 sec 37.1 KBytes 304 Kbits/sec 0 66.6 KBytes
[5] 8.01-9.01 sec 48.5 KBytes 397 Kbits/sec 0 66.6 KBytes
[5] 9.01-10.01 sec 22.8 KBytes 187 Kbits/sec 0 66.6 KBytes
- -
[ID] Interval Transfer Bitrate Retr

88

https://man.freebsd.org/cgi/man.cgi?query=dnctl&sektion=8&format=html

[5] 0.00-10.01 sec 399 KBytes 327 Kbits/sec 0 sender
 Sent 399 KByte / 9.54 MByte (4%) of A.bin
[5] 0.00-10.73 sec 379 KBytes 289 Kbits/sec receiver

iperf Done.


If the systems returns the error "iperf3: error - control socket has closed
unexpectedly", simply re-run the command.

Here, during iperf3's 10-second run, the ipfw dummynet configuration limited the transfer speed
to an average of about 327 Kbits/sec, and only about 4% of the entire 10MB file was transferred.

To see how to use dummynet to configure different link speeds, set up a second pipe:

ipfw pipe 2 config bw 3Mbit/s
ipfw pipe show
00001: 300.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x0 0 buckets 0 active
00002: 3.000 Mbit/s 0 ms burst 0
q131074 50 sl. 0 flows (1 buckets) sched 65538 weight 0 lmax 0 pri 0 droptail
 sched 65538 type FIFO flags 0x0 0 buckets 0 active
#

This pipe is set up to be 10 times faster (3Mb/sec instead of 300Kb/sec) than pipe 1. To test this pipe,
start up the external2 VM and run iperf3 -s. Then reconfigure the ipfw rules to send to the
external2 VM through pipe 2:

ipfw list
00100 check-state :default
01000 pipe 1 ip from any to any
65535 deny ip from any to any
#
ipfw delete 1000
#
ipfw add 1000 pipe 1 ip from me to 203.0.113.10 // external1
01000 pipe 1 ip from me to 203.0.113.10
#
ipfw add 1100 pipe 1 ip from 203.0.113.10 to me // external1
01100 pipe 1 ip from 203.0.113.10 to me
#
ipfw add 2000 pipe 2 ip from me to 203.0.113.20 // external2
02000 pipe 2 ip from me to 203.0.113.20
#
ipfw add 2100 pipe 2 ip from 203.0.113.20 to me // external2
02100 pipe 2 ip from 203.0.113.20 to me
#
ipfw list

89

00100 check-state :default
01000 pipe 1 ip from me to 203.0.113.10
01100 pipe 1 ip from 203.0.113.10 to me
02000 pipe 2 ip from me to 203.0.113.20
02100 pipe 2 ip from 203.0.113.20 to me
65535 deny ip from any to any
#

As expected, pipe 2 is approximately 10 times faster than pipe 1:

iperf3 -F A.bin -c 203.0.113.20 -t 10 --length 1460
Connecting to host 203.0.113.20, port 5201
[5] local 203.0.113.50 port 48108 connected to 203.0.113.20 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.01 sec 399 KBytes 3.24 Mbits/sec 0 64.0 KBytes
[5] 1.01-2.01 sec 358 KBytes 2.93 Mbits/sec 0 64.0 KBytes
[5] 2.01-3.01 sec 359 KBytes 2.94 Mbits/sec 0 64.0 KBytes
[5] 3.01-4.01 sec 364 KBytes 2.98 Mbits/sec 0 64.0 KBytes
[5] 4.01-5.01 sec 368 KBytes 3.01 Mbits/sec 0 66.9 KBytes
[5] 5.01-6.01 sec 332 KBytes 2.72 Mbits/sec 0 66.9 KBytes
[5] 6.01-7.01 sec 362 KBytes 2.97 Mbits/sec 0 66.9 KBytes
[5] 7.01-8.01 sec 355 KBytes 2.91 Mbits/sec 0 66.9 KBytes
[5] 8.01-9.01 sec 345 KBytes 2.83 Mbits/sec 0 66.9 KBytes
[5] 9.01-10.01 sec 344 KBytes 2.81 Mbits/sec 0 66.9 KBytes
- -
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.01 sec 3.50 MBytes 2.93 Mbits/sec 0 sender
 Sent 3.50 MByte / 9.54 MByte (36%) of A.bin
[5] 0.00-10.06 sec 3.48 MBytes 2.90 Mbits/sec receiver

iperf Done.

Next, change the pipe configuration without changing the ruleset. Below, the pipe 1 bandwidth is
changed to the equivalent of a telecommunications T1 line as in the days of old:

ipfw pipe 1 config bw 1544Kbit/s
ipfw pipe show
00001: 1.544 Mbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x0 0 buckets 0 active
00002: 3.000 Mbit/s 0 ms burst 0
q131074 50 sl. 0 flows (1 buckets) sched 65538 weight 0 lmax 0 pri 0 droptail
 sched 65538 type FIFO flags 0x0 0 buckets 0 active
#

Resending the 10MB file across the T1 configured line shows these results:

90

root@firewall:~ # iperf3 -F A.bin -c 203.0.113.10 -t 10 --length 1460
Connecting to host 203.0.113.10, port 5201
[5] local 203.0.113.50 port 35768 connected to 203.0.113.10 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.01 sec 235 KBytes 1.91 Mbits/sec 0 25.6 KBytes
[5] 1.01-2.01 sec 173 KBytes 1.41 Mbits/sec 0 25.6 KBytes
[5] 2.01-3.01 sec 195 KBytes 1.60 Mbits/sec 0 27.0 KBytes
[5] 3.01-4.01 sec 174 KBytes 1.42 Mbits/sec 0 45.0 KBytes
[5] 4.01-5.01 sec 182 KBytes 1.50 Mbits/sec 0 62.1 KBytes
[5] 5.01-6.01 sec 178 KBytes 1.46 Mbits/sec 0 62.1 KBytes
[5] 6.01-7.01 sec 174 KBytes 1.42 Mbits/sec 0 62.1 KBytes
[5] 7.01-8.01 sec 180 KBytes 1.47 Mbits/sec 0 62.1 KBytes
[5] 8.01-9.01 sec 204 KBytes 1.67 Mbits/sec 0 62.1 KBytes
[5] 9.01-10.01 sec 178 KBytes 1.46 Mbits/sec 0 62.1 KBytes
- -
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.01 sec 1.83 MBytes 1.53 Mbits/sec 0 sender
 Sent 1.83 MByte / 9.54 MByte (19%) of A.bin
[5] 0.00-10.21 sec 1.81 MBytes 1.48 Mbits/sec receiver

iperf Done.

About half of the 3Mbits/sec speed of pipe 2, again as expected.

By definition, a pipe has just one queue, and it is subject to "First In First Out" (FIFO) operation. All
traffic that flows through this pipe shares the same characteristics.

However, creating a pipe also does something else. It creates a default sched (scheduler) that
governs the pipe:

Start with no pipes or schedulers

#
ipfw pipe list
#
ipfw sched list
#

Create a simple pipe.

ipfw pipe 1 config bw 100KBit/s
#
ipfw pipe list
00001: 100.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x0 0 buckets 0 active
#

Observe the default scheduler for this pipe

91

ipfw sched list
00001: 100.000 Kbit/s 0 ms burst 0
 sched 1 type WF2Q+ flags 0x0 0 buckets 0 active
#

The default scheduler for a new pipe is of type WF2Q+, a version of the Weighted Fair Queueing
algorithm for packet transfer.

This is now a single pipe of type FIFO operation that is managed by a WF2Q+ scheduling algorithm.

The ipfw(8) man page makes note of several other scheduling algorithms. These can be selected by
using the "type" keyword on the pipe command. The type keyword selects the type of scheduler
applied to the pipe - not the type of the pipe itself (the pipe remains FIFO):

ipfw pipe list
#
ipfw sched list
#

Create a pipe and assign a scheduler of type Round Robin (Deficit Round Robin)

ipfw pipe 1 config bw 100KBit/s type rr
#
ipfw pipe list
00001: 100.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x0 0 buckets 0 active
#

View the new sheduler of type RR (Deficit Round Robin)

ipfw sched list
00001: 100.000 Kbit/s 0 ms burst 0
 sched 1 type RR flags 0x0 0 buckets 0 active
#

*pipes and *sched*s (schedulers) are tightly bound. In fact, there is no command to delete a
scheduler. The scheduler is deleted when the pipe is deleted.

Note however that the scheduler can be configured independently if desired. Here is a change to
the scheduler type from the above type RR to QFQ, a variant of WF2Q+:

#
ipfw sched 1 config type qfq

92

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

Bump qfq weight to 1 (was 0)
Bump qfq maxlen to 1500 (was 0)
#
ipfw sched list
00001: 100.000 Kbit/s 0 ms burst 0
 sched 1 type QFQ flags 0x0 0 buckets 0 active
#

There are other keywords that can be added to a pipe specification: delay, burst, profile, weight,
buckets, mask, noerror, plr, queue, red or gred, codel, and pie. These are described in the ipfw(8)
man page.

A contrived example might be:

Start fresh

ipfw pipe 1 delete
#
ipfw pipe 1 config bw 100kbit/s delay 20 burst 2000 weight 40 buckets 256 mask src-
ip 0x000000ff noerror plr 0.01 queue 75 red .3/25/30/.5 type qfq
#
ipfw pipe list
00001: 100.000 Kbit/s 20 ms burst 2000
q131073 75 sl.plr 0.010000 0 flows (1 buckets) sched 65537 weight 40 lmax 0 pri 0
 RED w_q 0.299988 min_th 25 max_th 30 max_p 0.500000
 sched 65537 type FIFO flags 0x1 256 buckets 0 active
 mask: 0x00 0x000000ff/0x0000 -> 0x00000000/0x0000
#
ipfw sched list
00001: 100.000 Kbit/s 20 ms burst 2000
 sched 1 type QFQ flags 0x1 256 buckets 0 active
 mask: 0x00 0x000000ff/0x0000 -> 0x00000000/0x0000
#

Setting up two separate pipes to send data to the same destination is overkill. It is like setting up
two separate network links between the two points. While that may be desirable for redundancy or
high-availability, it makes no difference for bandwidth allocation. (Yes, link aggregation is possible,
but that is not being considered here.)

What is usually needed is a way to separate traffic into different "lanes" and assign different "speed
limits" to each lane. That is exactly what queues are for.

4.2.2. Simple Pipe and Queue Configuration

Before going further, it is useful to disambiguate the two meanings of the word "queue".

In a pipe definition, by default, the pipe is assigned a queue where incoming packets are held

93

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

before processing and transit. The size of this "pipe queue" is by default 50 packets, but can be
changed with the queue keyword on the pipe definition:

ipfw pipe 1 config bw 200Kbit/s
#
ipfw pipe list
00001: 200.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x0 0 buckets 0 active
#
ipfw pipe 2 config bw 200Kbit/s queue 75
#
ipfw pipe list
00001: 200.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x0 0 buckets 0 active
00002: 200.000 Kbit/s 0 ms burst 0
q131074 75 sl. 0 flows (1 buckets) sched 65538 weight 0 lmax 0 pri 0 droptail
 sched 65538 type FIFO flags 0x0 0 buckets 0 active
#

In contrast, dummynet has the concept of flow queues which are virtual groupings of packets
assigned to a flow according to a mask in their definition with ipfw queue statements.

Configuring a queue is almost as simple as configuring a pipe.

Start with a clean slate (all objects and rules deleted):

kldunload dummynet
kldunload ipfw
kldload ipfw
ipfw2 (+ipv6) initialized, divert loadable, nat loadable, default to deny, logging
disabled
kldload dummynet
load_dn_sched dn_sched FIFO loaded
load_dn_sched dn_sched QFQ loaded
load_dn_sched dn_sched RR loaded
load_dn_sched dn_sched WF2Q+ loaded
load_dn_sched dn_sched PRIO loaded
load_dn_sched dn_sched FQ_CODEL loaded
load_dn_sched dn_sched FQ_PIE loaded
load_dn_aqm dn_aqm CODEL loaded
load_dn_aqm dn_aqm PIE loaded
#
ipfw queue 1 config pipe 1
#
ipfw queue show

94

q00001 50 sl. 0 flows (1 buckets) sched 1 weight 0 lmax 0 pri 0 droptail

Here is one queue of size 50 packets that was created and assigned to pipe 1. Since there is no
assigned weight, the weight is 0 (zero), which is the least weight possible. The queue currently has
0 flows, meaning that this queue has no traffic flowing through it.

Notice however, that the queue was created before the pipe. That is why the weight is 0. The default
queue weight is 1. This configuration was actually done out of order. To maintain a readable
configuration, it is best to configure the objects in the following order:

1. pipes (also creates a scheduler, which can be assigned a specific scheduler type)

2. queues - create queues and assign weights, source and destination masks, delay, and other
characteristics to the queue

3. Assign rules to match traffic using standard 5-tuples or as needed

dummynet also has the ability to separate out different flows within the same pipe to perform
different scheduling algorithms. An example of this capability is shown later in this section.

When transferring a file to the external1 VM and attempting to type interactively on the external1
VM at the same time, the ability to type at speed is dramatically reduced. The file transfer packets,
being much larger than interactive typing packets are hogging all the bandwidth. This effect is a
well known phenomenon to anyone who edits documents on a remote site. Since packets are
created much faster by a file transfer program than anyone can type, the outbound queue is almost
always full of large packets, leaving keystrokes to be separated by large amounts of file transfer
data in the queue.



Try this out on the firewall VM by resetting the pipe 1 bandwidth to 300Kbit/sec,
and in one session, run iperf3 as iperf3 -c 203.0.113.10 -t 60. Then in another
session, add rules for ssh traffic and ssh to external1 VM and try to enter text into
a scratch file. The typing delay is almost unbearable.

To control traffic flow between the firewall VM and any external VM host, set up individual
queues to separate traffic within a pipe. queues can be either static - defined with ipfw queue
config … - or they can be dynamic. Dynamic queues are created when using the mask keyword.
Masks for queues are called flow masks. The mask determines if a packet entering or leaving the
firewall is selected to be entered into a queue. Consider the following example:

ipfw pipe 1 config bw 200Kbit/s mask src-ip 0x000000ff

Each /24 host transferring data through pipe 1 (based on suitable rules) will have its own dynamic
queue, all sharing the bandwidth in the pipe according to the configration of the queue.

If a different data transfer that is not related to the pipe, queue, and flow mask is started, it will not

95

have any effect on the data in the pipe and queue. Dummynet keeps such transfers separate from
the pipe and queue operations.

If instead, the goal is to create separate individual queues with different characteristics such as
different weights or delay, create static queues and then assign them to individual pipes as
desired:

#
ipfw pipe 1 config bw 300kbit/s
#
ipfw pipe show
00001: 300.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x0 0 buckets 0 active
#
ipfw queue 1 config pipe 1 weight 10 mask dst-ip 0xffffffff dst-port 5201
Bump flowset buckets to 64 (was 0)
#
ipfw queue 2 config pipe 1 weight 10 mask dst-ip 0xffffffff dst-port 5202
Bump flowset buckets to 64 (was 0)
#
ipfw queue show
q00001 50 sl. 0 flows (64 buckets) sched 1 weight 10 lmax 0 pri 0 droptail
 mask: 0x00 0x00000000/0x0000 -> 0xffffffff/0x1451
q00002 50 sl. 0 flows (64 buckets) sched 1 weight 10 lmax 0 pri 0 droptail
 mask: 0x00 0x00000000/0x0000 -> 0xffffffff/0x1452
#
ipfw add 10 allow icmp from any to any
00010 allow icmp from any to any
#
ipfw add 100 check-state
00100 check-state :default
#
ipfw add 1000 queue 1 tcp from me to 203.0.113.10 5201 setup keep-state
01000 queue 1 tcp from me to 203.0.113.10 5201 setup keep-state :default
#
ipfw add 1100 queue 2 tcp from me to 203.0.113.20 5202 setup keep-state
01100 queue 2 tcp from me to 203.0.113.20 5202 setup keep-state :default
#
ipfw list
00010 allow icmp from any to any
00100 check-state :default
01000 queue 1 tcp from me to 203.0.113.10 5201 setup keep-state :default
01100 queue 2 tcp from me to 203.0.113.20 5202 setup keep-state :default
65535 deny ip from any to any
#


Later versions of FreeBSD may not return any output on ipfw queue configuration
statements. The configuration is completed successfully, though without any

96

output.

Running

iperf3 -c 203.0.113.10 -p 5201 -t 30 -O 5 --length 1460

produces the output below.

The output is the result of using the "omit" flag (-O) on the sender to ignore the first five seconds of
output. This removes the "slow start" portion of the TCP test, and focuses instead on the "steady
state" that occurs after slow start gets up to speed.

Figure 20. Testing Separate Static Queues and Pipes

This example shows the steady state results of transmitting data through one queue - queue 1. The
bitrate was consistently about 293Kbits/sec.

97



Later versions of FreeBSD and iperf3 may differ from the display in the above
figure. Assess the correctness of the queue setup by examining the transfer
summary printed at the end of the iperf3 command output. Use of the iperf3
--length parameter may provide additional clarity for transfers.

During the transmission, a view of the queue status was:

ipfw queue show
q00001 50 sl. 2 flows (64 buckets) sched 1 weight 10 lmax 0 pri 0 droptail
 mask: 0x00 0x00000000/0x0000 -> 0xffffffff/0x1451
BKT Prot Source IP/port Dest. IP/port Tot_pkt/bytes Pkt/Byte Drp
136 ip 0.0.0.0/0 203.0.113.10/5201 2293 3425216 42 63000 0
 50 ip 0.0.0.0/0 203.0.113.50/1040 752 39104 1 52 0
q00002 50 sl. 0 flows (64 buckets) sched 1 weight 10 lmax 0 pri 0 droptail
 mask: 0x00 0x00000000/0x0000 -> 0xffffffff/0x1452
#

The queue mask, set to show the full destination address and destination port is highlighted.


Note that port numbers are displayed in hexadecimal. A decimal/hexadecimal
calculator may be helpful when looking at a lot of queue displays.

The next example shows the result of starting two transmissions, one for each queue.

On the external1 VM, set up the command iperf3 -s -p 5201, and on external2 use the command
iperf3 -s -p 5202.

Start the transfer to external1 on the firewall VM with the command:

iperf3 -c 203.0.113.10 -p 5201 -t 180 -O 30

and start the second transfer from a different session on the firewall VM with the command:

iperf3 -c 203.0.113.20 -p 5202 -t 180 -O 30

Notice how the queue is adjusted to accommodate the presence of a second queue of equal weight:

98

Figure 21. Testing Two Static Queues and Pipes

Since the queues were equally weighted, the result was that the transmission bitrate for both
queues was reduced to about half of the transmission bitrate before the second transmission
started.

The highlighted area shows how the first queue adapted.

Queue characteristics can be changed at any time, even during an active flow. Consider the case
below where, during simultaneous transmission through queues of equal weight, the queue weight
of the second queue was modified as follows:

queue 1: original weight 10 modified weight 10 (no change)

queue 2: original weight 10 modified weight 50 (increased)

This change can be effected by the command:

ipfw queue 2 config weight 50

99

Figure 22. Testing Two Static Queues and Pipes Changed In-flight

The transmission bitrate for queue 1 dropped from an average of about 140Kbits/sec to an average
of about 50Kbits/sec; while the rate for queue 2 expanded during and after the reconfiguration.

Note however, that the above command had a side effect:

ipfw queue show
q00001 50 sl. 0 flows (64 buckets) sched 1 weight 10 lmax 0 pri 0 droptail
 mask: 0x00 0x00000000/0x0000 -> 0xffffffff/0x1451
q00002 50 sl. 0 flows (1 buckets) sched 1 weight 50 lmax 0 pri 0 droptail
#

The flow mask for queue 2 has been deleted. In fact, all settings not explicitly reset will revert to
their default settings. Here is a complicated queue setup:

ipfw queue 1 config pipe 1 weight 40 buckets 256 mask src-ip 0x000000ff dst-ip
0x0000ffff noerror plr 0.01 queue 75 red .3/25/30/.5
#
ipfw queue show
q00001 75 sl.plr 0.010000 0 flows (256 buckets) sched 1 weight 40 lmax 0 pri 0
 RED w_q 0.299988 min_th 25 max_th 30 max_p 0.500000
 mask: 0x00 0x000000ff/0x0000 -> 0x0000ffff/0x0000
#

And if, similar to the previous example, only the weight is changed:

ipfw queue 1 config weight 20

100

#
ipfw queue show
q00001 50 sl. 0 flows (1 buckets) sched 1 weight 20 lmax 0 pri 0 droptail
#

All the other parameters of the queue are reset to their defaults. Therefore, it is best to retain the
original commands used to construct queues, pipes, and schedulers, even if changing only
one parameter. That way, all other parameters can be replicated on the command line. Otherwise
it may be necessary to reconstruct the parameters from the output of ipfw queue show which can
be quite tedious.

4.2.3. Relationships

As described throughout this section, pipes, queues, and scheds (schedulers) are interrelated. Here
are some simplified principles:

• Bandwidth - the bandwidth of a particular pipe determines the highest rate at which all data
will move through the pipe with optimal conditions. With lower configured bandwidth, less
data will be transferred. This has an effect on queue size.

• Queue size - the number of packets, or if expressed in K or Mbytes, the amount of data waiting
to be transferred though a pipe. If the queue fills up or overflows, packets are dropped which
may result in retransmissions, depending on the protocol or application involved. That being
said, best practice is to configure for smaller, rather than larger queue sizes. See RFC 2309 for a
thorough discussion.

• Delay - delay can be configured in a pipe to inject additional time between individual transfers.
It is distinct from bandwidth in that it can only slow down traffic, not speed it up.

• Packet Loss - packet loss can be configured in a pipe to simulate lossy transmission media. It
simulates how well the receiver can correctly "hear" the transmissions. Packet loss may also
result in retransmissions.

• Scheduling - scheduling determines the allocation of bandwidth among flows. If there is only
one queue in a pipe, and one flow in that queue, the scheduler does not really have much to do.
However, if there are multiple queues in a pipe each with their own flow, the scheduler
determines the order of service based on the selected algorithm (RR, QFQ, WFQ+, etc.) and
queue weights.

• Queue weight - a numerical value that can be used to influence the scheduler to prefer certain
flows ahead of other flows. Higher weights result in increased traffic in a flow. However, even
with a very minimal weight, a flow will never starve - that is, it will still eventually get serviced
by the scheduler.

Additional detail is contained in ipfw(8).

4.2.4. Dynamic Pipes

Here, note that the simplest setup for pipes creates dynamic pipes when needed:

ipfw pipe 1 config bw 300kbit/s weight 10 mask src-ip 0x0000ffff dst-ip 0xffffffff

101

https://datatracker.ietf.org/doc/html/rfc2309
https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

Bump sched buckets to 64 (was 0)
#
ipfw pipe show
00001: 300.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 10 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x1 64 buckets 0 active
 mask: 0x00 0x0000ffff/0x0000 -> 0xffffffff/0x0000
#
ipfw list
00050 allow icmp from any to any
00100 check-state :default
65535 deny ip from any to any
#
ipfw add 1000 pipe 1 tcp from me to 203.0.113.0/24 5201-5203 setup keep-state
01000 pipe 1 tcp from me to 203.0.113.0/24 5201-5203 setup keep-state :default
#
ipfw list
01000 pipe 1 tcp from me to 203.0.113.0/24 5201-5203 setup keep-state :default
65535 deny ip from any to any
#

Sending some data with this configuration:

ipfw pipe show
00001: 300.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 10 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x1 64 buckets 4 active
 mask: 0x00 0x0000ffff/0x0000 -> 0xffffffff/0x0000
BKT Prot Source IP/port Dest. IP/port Tot_pkt/bytes Pkt/Byte Drp
 6 ip 0.0.10.10/0 203.0.113.50/0 236 12272 0 0 0
 78 ip 0.0.10.50/0 203.0.113.10/0 1493 2225216 43 64500 0
 80 ip 0.0.10.50/0 203.0.113.20/0 1355 2018216 42 63000 0
 58 ip 0.0.10.20/0 203.0.113.50/0 366 19032 0 0 0
#
ipfw list
00050 allow icmp from any to any
00100 check-state :default
01000 pipe 1 tcp from me to 203.0.113.0/24 5201-5203 setup keep-state :default
65535 deny ip from any to any
#

All three transmissions running together, single pipe:

ipfw pipe show
00001: 300.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 10 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x1 64 buckets 6 active
 mask: 0x00 0x0000ffff/0x0000 -> 0xffffffff/0x0000
BKT Prot Source IP/port Dest. IP/port Tot_pkt/bytes Pkt/Byte Drp

102

 6 ip 0.0.10.10/0 203.0.113.50/0 588 30576 0 0 0
 78 ip 0.0.10.50/0 203.0.113.10/0 1508 2247716 43 64500 0
 80 ip 0.0.10.50/0 203.0.113.20/0 1357 2021216 43 64500 0
 90 ip 0.0.10.50/0 203.0.113.30/0 1322 1981552 41 61500 0
 46 ip 0.0.10.30/0 203.0.113.50/0 34 1768 0 0 0
 58 ip 0.0.10.20/0 203.0.113.50/0 702 36504 0 0 0

Because of the ipfw rule:

01000 pipe 1 tcp from me to 203.0.113.0/24 5201-5203 setup keep-state :default

All are getting 290 Kbit/sec from iperf3 and they are all sharing the pipe equally.

If iperf3 is changed to send to different ports for each system (5201, 5202, 5203) on the external1,
external2, and external3 VMs respectively, there is no change. It is only with queues, and setting
the individual flow rate, that can effect change.

Below are examples of different masks and their effect on traffic flow:

* dst-ip 0x0000ffff

ipfw pipe show
00001: 300.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x1 64 buckets 4 active
 mask: 0x00 0x00000000/0x0000 -> 0x0000ffff/0x0000
BKT Prot Source IP/port Dest. IP/port Tot_pkt/bytes Pkt/Byte Drp
 10 ip 0.0.0.0/0 0.0.10.10/0 1183 1760218 43 64500 0
 20 ip 0.0.0.0/0 0.0.10.20/0 974 1446718 42 63000 0
 30 ip 0.0.0.0/0 0.0.10.30/0 688 1017718 35 52500 0
 50 ip 0.0.0.0/0 0.0.10.50/0 1717 89284 0 0 0

* dst-ip 0xffffffff

ipfw pipe show
00001: 300.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x1 64 buckets 4 active
 mask: 0x00 0x00000000/0x0000 -> 0xffffffff/0x0000
BKT Prot Source IP/port Dest. IP/port Tot_pkt/bytes Pkt/Byte Drp
 18 ip 0.0.0.0/0 203.0.113.50/0 402 20888 0 0 0
 42 ip 0.0.0.0/0 203.0.113.10/0 144 204722 0 0 0
 52 ip 0.0.0.0/0 203.0.113.20/0 359 525971 0 0 0
 62 ip 0.0.0.0/0 203.0.113.30/0 562 843000 37 55500 0

* src-ip 0x0000ffff

103

ipfw pipe show
00001: 300.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x1 64 buckets 4 active
 mask: 0x00 0x0000ffff/0x0000 -> 0x00000000/0x0000
BKT Prot Source IP/port Dest. IP/port Tot_pkt/bytes Pkt/Byte Drp
 20 ip 0.0.10.10/0 0.0.0.0/0 361 19348 0 0 0
100 ip 0.0.10.50/0 0.0.0.0/0 2102 3079974 36 54000 27
 40 ip 0.0.10.20/0 0.0.0.0/0 193 10416 0 0 0
 60 ip 0.0.10.30/0 0.0.0.0/0 47 2612 0 0 0

* mask src-ip 0x0000ffff dst-ip 0x0000ffff <-only one keyword mask needs to be
specified

ipfw pipe show
00001: 300.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x1 64 buckets 6 active
 mask: 0x00 0x0000ffff/0x0000 -> 0x0000ffff/0x0000
BKT Prot Source IP/port Dest. IP/port Tot_pkt/bytes Pkt/Byte Drp
 14 ip 0.0.10.30/0 0.0.10.50/0 253 13156 0 0 0
 26 ip 0.0.10.20/0 0.0.10.50/0 61 3172 0 0 0
 38 ip 0.0.10.10/0 0.0.10.50/0 771 40094 0 0 0
110 ip 0.0.10.50/0 0.0.10.10/0 853 1265218 40 60000 0
112 ip 0.0.10.50/0 0.0.10.20/0 723 1083052 37 55500 0
122 ip 0.0.10.50/0 0.0.10.30/0 644 951718 34 51000 0

* mask src-ip 0x0000ffff dst-ip 0x0000ffff dst-port 5201

ipfw pipe show
00001: 300.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x1 64 buckets 6 active
 mask: 0x00 0x0000ffff/0x0000 -> 0x0000ffff/0x1451
BKT Prot Source IP/port Dest. IP/port ot_pkt/bytes Pkt/Byte Drp
204 ip 0.0.10.50/0 0.0.10.10/5201 2132 3183718 43 64500 0
 14 ip 0.0.10.30/0 0.0.10.50/4096 823 42796 0 0 0
210 ip 0.0.10.50/0 0.0.10.20/5201 2001 2987218 43 64500 0
152 ip 0.0.10.20/0 0.0.10.50/4161 663 34476 0 0 0
216 ip 0.0.10.50/0 0.0.10.30/5201 1981 2957218 43 64500 0
164 ip 0.0.10.10/0 0.0.10.50/65 471 24492 0 0 0

* mask src-ip 0xffffffff dst-ip 0xffffffff

ipfw pipe 1 show
00001: 300.000 Kbit/s 0 ms burst 0
q131073 50 sl. 0 flows (1 buckets) sched 65537 weight 0 lmax 0 pri 0 droptail
 sched 65537 type FIFO flags 0x1 64 buckets 6 active

104

 mask: 0x00 0xffffffff/0x0000 -> 0xffffffff/0x0000
BKT Prot Source IP/port Dest. IP/port Tot_pkt/bytes Pkt/Byte Drp
 64 ip 203.0.113.50/0 203.0.113.20/0 1215 1808218 43 64500 0
 74 ip 203.0.113.50/0 203.0.113.30/0 1023 1533052 43 64500 0
 22 ip 203.0.113.10/0 203.0.113.50/0 746 38792 0 0 0
 94 ip 203.0.113.50/0 203.0.113.10/0 1863 2780218 42 63000 0
 42 ip 203.0.113.20/0 203.0.113.50/0 481 25012 0 0 0
 62 ip 203.0.113.30/0 203.0.113.50/0 159 8268 0 0 0

4.2.5. Other Pipe and Queue Commands

To delete pipes and queues use the following syntax:

For queues, specify the queue number on the command line:

ipfw queue delete 1

For pipes, specify the pipe number on the command line:

ipfw pipe delete 1

Note however that:

ipfw delete pipe 1 <----- does not throw error, and does not delete the pipe.

The same is true for the corresponding queue keyword. Take care to use the proper syntax.


It is possible to delete a pipe with a pipe statement still in the ruleset. ipfw will not
throw an error - but any data transfer matching the pipe statement will not work.

scheds (schedulers) and pipes are tightly bound. To delete a scheduler, first delete the pipe, and
then re-create the pipe. The scheduler for the new pipe is reset to the default scheduler. However,
it is possible to change the current scheduler type at any time:

To change the scheduler type:
ipfw sched config 1 type wfq2 # or rr or any other sched type

105

4.3. Adding Additional Virtual Machines
Up to this point, only two or three virtual machines have been used for exploring ipfw. The later
material in this book requires the use of several additional virtual machines.

The NAT chapter calls for several more VMs for:

Figure 23. Setting Up Simple NAT

Figure 24. Setting up Load Sharing NAT

106

Figure 25. Setting Up NAT64 and DNS64

Figure 26. Setting Up 464XLAT

If you have not already done so, finish setting up the remaining VMs as described in Appendix A.

Also, ensure each virtual machine is set up to boot a serial console by adding "console=comconsole"
to /boot/loader.conf.

Finally, adjust the number of active windows in swim.sh (or scim.sh) by uncommenting the
appropriate lines in the script.

107

Chapter 5. ipfw NAT
Network Address Translation (NAT) is the process of changing the source or destination address of
a packet as it flows through the firewall. This is done chiefly to segregate internal networks and
subnets from external networks.

FreeBSD has two capabilities for NAT - natd(8) a daemon process that can perform these
translations, and in-kernel NAT with ipfw. Both of these capabilities use the libalias(3) library.
This section will focus primarily on in-kernel NAT with ipfw.

5.1. General Procedures for Working NAT Examples
This section uses more than two virtual machines (VMs). Begin the setup for simple NAT by
following the directions on Setting Up the Entire IPFW Lab.

The examples in this section and later sections grow increasingly complex. Follow this standard
procedure for startup with each new example:

1. On the host, set up the bridge and tap setup needed for the examples. Use mkbr.sh to configure
bridge and tap devices on the host. Examine the figure, and run the script with all bridges and
taps accounted for.

2. Start up swim.sh (or scim.sh) for access to VM serial consoles.

3. Start up the required VMs. Use runvm.sh to start up several VMs at one time.

4. On each VM, set up the required addressing. Check the diagram in each Section for addressing
requirements.

5. Ensure all VMs have connectivity to their local network peers.

6. If there are additional scripts to load onto the firewall, external, internal, dnshost, or v6only
VMs, load them.

7. If there are specific DNS entries that are required for an example, load them into the dnshost
and test the entries from another VM.

8. Other VMs in some examples require adding additional routes.

9. On the firewall VM, unload and reload the firewall: (kldunload ipfw and kldload ipfw).

10. Check whether any sysctl entries are required for the example.

11. Follow the procedure given for each section.

12. Troubleshoot as necessary.

5.2. Setting Up for Simple NAT

108

https://man.freebsd.org/cgi/man.cgi?query=natd&sektion=8&format=html

Figure 27. Setting Up Simple NAT

Shut down the existing VMs from the previous examples and reload ipfw. To set up the correct
network bridge and tap architecture as shown in the figure above, use this command:

sudo /bin/sh mkbr.sh reset bridge0 tap1 tap4 bridge1 tap0 tap5

Restart the desired VMs with:

/bin/sh runvm.sh firewall external1 internal

Use the above figure to set up the correct addresses for each VM and ping adjacent interfaces.

For routing, the external1 VM should have the default route set to 203.0.113.50. The internal VM
should have its default route set to 10.10.10.50. The firewall should have its default route set to
203.0.113.10 (external1) since this example wants all traffic to exit via the firewall em1 interface.

The firewall should already be set up for IP forwarding (sysctl net.inet.ip.forwarding=1), but if

109

not, set the sysctl as indicated. Try to ping em0 on external1 VM from the internal VM host and
vice-versa. Check all addressing, the host bridge and tap devices, and the sysctl
net.inet.ip.forwarding=1 on the firewall if something is not working.

On the firewall VM, restart ipfw with

kldload ipfw

To use in-kernel NAT, first load the ipfw_nat kernel module:

kldload ipfw_nat

Running kldstat should now show output similar to:

kldstat
Id Refs Address Size Name
 1 11 0xffffffff80200000 1f370e8 kernel
 2 1 0xffffffff82818000 3220 intpm.ko
 3 1 0xffffffff8281c000 2178 smbus.ko
 4 2 0xffffffff8281f000 27450 ipfw.ko
 5 1 0xffffffff82847000 42d0 ipfw_nat.ko
 6 1 0xffffffff8284c000 c962 libalias.ko
#

The example is ready to explore ipfw_nat.

Similar to other ipfw entities such as pipes and queues, ipfw_nat works with a NAT object. A NAT
object is a single entry in the packet aliasing database.

First, create a NAT object:

ipfw nat 25 config ip 198.51.100.50
ipfw nat 25 config ip 198.51.100.50
#
ipfw nat show config
ipfw nat 25 config ip 198.51.100.50

Note that the NAT object identifier must be numeric, not alphabetic or alphanumeric. A NAT object
identifier such as foo or 25foo will be rejected by ipfw.

Next, load two rules that will use that instance:

110

ipfw add 1000 nat 25 tcp from any to any
ipfw add 2000 nat 25 icmp from any to any

Listing the ruleset shows the NAT object and the rule body.

ipfw list
01000 nat 25 tcp from any to any
02000 nat 25 icmp from any to any
65535 deny ip from any to any

There is now an ipfw_nat instance in the packet aliasing database and rules that will engage that
instance. This is generally referred to as "static NAT".

The ipfw_nat instance will replace the IP source address of any packet exiting the firewall with
198.51.100.50, provided that packet has reached the ipfw_nat rule and matches its configuration.

To test, start tcpdump(1) on the host system monitoring bridge0. (Ensure once again that the host
system is not running a firewall.)

host_system# tcpdump -n -i bridge0 -v

Then, from the firewall VM, telnet(1) to any IP address not used in the lab:

telnet 172.16.10.10
Trying 172.16.10.10...
^C

A few seconds to attempt the connection (which will not succeed anyway) shows the host tcpdump
output:

host_system# tcpdump -n -i bridge0 -v
tcpdump: listening on bridge0, link-type EN10MB (Ethernet), snapshot length 262144
bytes
19:58:34.099782 IP (tos 0x10, ttl 64, id 0, offset 0, flags [DF], proto TCP (6),
length 60)
 198.51.100.50.62143 > 172.16.10.10.23: Flags [S], cksum 0x89d4 (correct), seq
3107170690, win 65535, options [mss 1460,nop,wscale 6,sackOK,TS val 384725297 ecr 0],
length 0
19:58:38.300043 IP (tos 0x10, ttl 64, id 0, offset 0, flags [DF], proto TCP (6),
length 60)
 198.51.100.50.62143 > 172.16.10.10.23: Flags [S], cksum 0x796b (correct), seq
3107170690, win 65535, options [mss 1460,nop,wscale 6,sackOK,TS val 384729498 ecr 0],
length 0
19:58:46.500217 IP (tos 0x10, ttl 64, id 0, offset 0, flags [DF], proto TCP (6),

111

https://man.freebsd.org/cgi/man.cgi?query=tcpdump&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=telnet&sektion=1&format=html

length 60)
 198.51.100.50.62143 > 172.16.10.10.23: Flags [S], cksum 0x5964 (correct), seq
3107170690, win 65535, options [mss 1460,nop,wscale 6,sackOK,TS val 384737697 ecr 0],
length 0
^C

The source address has been changed from 203.0.113.50 to 198.51.100.50 as per the ipfw_nat
instance. Note however, that with the configuration binding NAT to an IP address, as opposed to an
interface, the NAT aliasing takes place on all configured interfaces, internal and external. Verify
this by repeating the above tcpdump on bridge1, and running a similar command for an existing
host on the internal network. This time the destination sends a TCP reset (RST), since the packet
reached the destination but the service on the destination was not open.

telnet 10.10.10.20

host_system# tcpdump -n -i bridge1 -v
tcpdump: listening on bridge1, link-type EN10MB (Ethernet), snapshot length 262144
bytes
20:12:13.706505 IP (tos 0x10, ttl 64, id 0, offset 0, flags [DF], proto TCP (6),
length 60)
 198.51.100.50.32825 > 10.10.10.20.23: Flags [S], cksum 0x6039 (correct), seq
1314409263, win 65535, options [mss 1460,nop,wscale 6,sackOK,TS val 3924141446 ecr 0],
length 0
20:12:13.710494 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length
40)
 10.10.10.20.23 > 198.51.100.50.32825: Flags [R.], cksum 0x5774 (correct), seq 0,
ack 1314409264, win 0, length 0
20:12:29.573756 IP (tos 0x10, ttl 64, id 0, offset 0, flags [DF], proto TCP (6),
length 60)
^C

To specify that only the outside interface is to be NATed, use the keyword if (interface) on the ipfw
NAT configuration statement and specify the correct external interface:

ipfw nat 25 config if em1
ipfw nat show config
ipfw nat 25 config if em1

ipfw does not permit the use of ip ip_addr and if interf_name options at the same time on the
same NAT instance. Use one or the other.

What happens in this case is that the NAT instance will ensure that the IP address of interface em1

112

will always be used on traffic exiting through that interface - even if the address changes (because
of DHCP or an administrative addressing change):

Traffic destined externally from the internal VM host via:

root@internal:~ # telnet 172.16.10.10
Trying 172.16.10.10...
^C

On the FreeBSD host:

host_system# tcpdump -n -i bridge0 -v
tcpdump: listening on bridge0, link-type EN10MB (Ethernet), snapshot length 262144
bytes
20:24:41.147755 IP (tos 0x10, ttl 63, id 0, offset 0, flags [DF], proto TCP (6),
length 60)
 203.0.113.50.40001 > 172.16.10.10.23: Flags [S], cksum 0x5962 (correct), seq
950423268, win 65535, options [mss 1460,nop,wscale 6,sackOK,TS val 2027118491 ecr 0],
length 0
20:24:42.189806 IP (tos 0x10, ttl 63, id 0, offset 0, flags [DF], proto TCP (6),
length 60)
 203.0.113.50.40001 > 172.16.10.10.23: Flags [S], cksum 0x554b (correct), seq
950423268, win 65535, options [mss 1460,nop,wscale 6,sackOK,TS val 2027119538 ecr 0],
length 0
20:24:44.394747 IP (tos 0x10, ttl 63, id 0, offset 0, flags [DF], proto TCP (6),
length 60)
 203.0.113.50.40001 > 172.16.10.10.23: Flags [S], cksum 0x4caa (correct), seq
950423268, win 65535, options [mss 1460,nop,wscale 6,sackOK,TS val 2027121747 ecr 0],
length 0
^C

Though it does not look like it, ipfw is translating the packets as they exit the firewall.

Consider this exchange where the internal VM host pings the external1 VM:

root@internal:~ # ping 203.0.113.10
PING 203.0.113.10 (203.0.113.10): 56 data bytes
64 bytes from 203.0.113.10: icmp_seq=0 ttl=63 time=2.742 ms
64 bytes from 203.0.113.10: icmp_seq=1 ttl=63 time=2.675 ms
^C

The traffic on the internal bridge (bridge1) shows the packets from the internal1 VM:

113

host_system# tcpdump -n -i bridge1 -v
tcpdump: listening on bridge1, link-type EN10MB (Ethernet), snapshot length 262144
bytes
20:29:27.048162 IP (tos 0x0, ttl 64, id 58916, offset 0, flags [none], proto ICMP (1),
length 84)
 10.10.10.20 > 203.0.113.10: ICMP echo request, id 15077, seq 0, length 64
20:29:27.052446 IP (tos 0x0, ttl 63, id 36018, offset 0, flags [none], proto ICMP (1),
length 84)
 203.0.113.10 > 10.10.10.20: ICMP echo reply, id 15077, seq 0, length 64
20:29:28.104133 IP (tos 0x0, ttl 64, id 58917, offset 0, flags [none], proto ICMP (1),
length 84)
 10.10.10.20 > 203.0.113.10: ICMP echo request, id 15077, seq 1, length 64
20:29:28.105732 IP (tos 0x0, ttl 63, id 36019, offset 0, flags [none], proto ICMP (1),
length 84)
 203.0.113.10 > 10.10.10.20: ICMP echo reply, id 15077, seq 1, length 64

whereas the traffic on the external bridge (bridge0) shows the correct translation:

host_system# tcpdump -n -i bridge0 -v
tcpdump: listening on bridge0, link-type EN10MB (Ethernet), snapshot length 262144
bytes
20:33:19.695939 IP (tos 0x0, ttl 63, id 58919, offset 0, flags [none], proto ICMP (1),
length 84)
 203.0.113.50 > 203.0.113.10: ICMP echo request, id 58206, seq 0, length 64
20:33:19.696546 IP (tos 0x0, ttl 64, id 36021, offset 0, flags [none], proto ICMP (1),
length 84)
 203.0.113.10 > 203.0.113.50: ICMP echo reply, id 58206, seq 0, length 64
20:33:20.715148 IP (tos 0x0, ttl 63, id 58920, offset 0, flags [none], proto ICMP (1),
length 84)
 203.0.113.50 > 203.0.113.10: ICMP echo request, id 58206, seq 1, length 64
20:33:20.715824 IP (tos 0x0, ttl 64, id 36022, offset 0, flags [none], proto ICMP (1),
length 84)
 203.0.113.10 > 203.0.113.50: ICMP echo reply, id 58206, seq 1, length 64
^C

The unreg_only and unreg_cgn configuration options allow bypassing the NAT operation if the
source IP of the packet is not one of the RFC 1918 addresses (unreg_only) or the RFC 6598 addresses
(unreg_cgn - carrier grade NAT). In these cases, the original source address will be maintained in
the packet, even though there is an ipfw_nat instance and a matching rule.

ipfw nat 25 show config
ipfw nat 25 config if em1
#
ipfw nat 25 config if em1 unreg_only
ipfw nat 25 config if em1 unreg_only
#

114

ipfw nat 25 show config
ipfw nat 25 config if em1 unreg_only
#

To try the unreg_only option, on the internal VM, change its IP address on em0 to a registered
number, say 140.140.140.140/24, and change the corresponding link on the firewall (em1) to a
compatible address - 140.140.140.1/24. The internal VM will need a new default route:
140.140.140.1. Ensure that the default route on the firewall VM remains 203.0.113.10.

root@internal:~ # ifconfig em0 140.140.140.140/24
root@internal:~ # route add default 140.140.140.1
add net default: gateway 140.140.140.1
root@internal:~ #

and on the firewall

root@firewall:~ # ifconfig em0 140.140.140.1/24

From the internal VM, try to ping an external address not in the lab:

ping 5.5.5.5

and observe on the host system that the ipfw_nat instance did not replace the source address with
the configured IP:

host_system# tcpdump -n -i bridge0 -v
tcpdump: listening on bridge0, link-type EN10MB (Ethernet), snapshot length 262144
bytes
21:07:18.154319 IP (tos 0x0, ttl 63, id 58943, offset 0, flags [none], proto ICMP (1),
length 84)
 140.140.140.140 > 5.5.5.5: ICMP echo request, id 38569, seq 0, length 64
21:07:19.180094 IP (tos 0x0, ttl 63, id 58944, offset 0, flags [none], proto ICMP (1),
length 84)
 140.140.140.140 > 5.5.5.5: ICMP echo request, id 38569, seq 1, length 64
21:07:20.194988 IP (tos 0x0, ttl 63, id 58945, offset 0, flags [none], proto ICMP (1),
length 84)
 140.140.140.140 > 5.5.5.5: ICMP echo request, id 38569, seq 2, length 64

Not all the options available to ipfw_nat are described in the NAT section of the ipfw(8) man page.

Some of the options usable from natd(8) are available to ipfw_nat. These include:

115

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=natd&sektion=8&format=html

redirect_port proto targetIP:targetPORT[-targetPORT]
 [aliasIP:]aliasPORT[-aliasPORT]
 [remoteIP[:remotePORT[-remotePORT]]]
redirect_proto proto localIP [publicIP [remoteIP]]

redirect_address localIP publicIP

The below options are used for Load Sharing NAT (LSNAT) as described in RFC 2391.

redirect_port proto targetIP:targetPORT[,targetIP:targetPORT[,...]]
 [aliasIP:]aliasPORT [remoteIP[:remotePORT]]
redirect_address localIP[,localIP[,...]] publicIP

LSNAT is discussed in the next section.

5.3. Setting Up for LSNAT
This example uses the three VMs external1, external2, and external3 and pretends they are on
the inside of the network; and internal VM is on the outside of the network.

The figure below shows the architecture setup for working with LSNAT.

116

https://www.rfc-editor.org/rfc/rfc2391.html

Figure 28. Setting Up for LSNAT

As before, shutdown all virtual machines and rebuild the network from scratch.

Use this command to set up the network bridge and tap architecture.

sudo /bin/sh mkbr.sh reset bridge0 tap4 tap5 bridge1 tap0 tap1 tap2 tap3

Note that the host interface is not needed for this example.

Restart the virtual machines with:

/bin/sh runvm.sh firewall internal external1 external2 external3

or start them up individually.

Configure each virtual machine to ensure its network configuration matches the above figure and

117

test connectivity between adjacent systems with ping(8).

Throughout this section, remember that the "external" VMs are now internal web servers load
balancing between .10, .20, .30, and the "internal" server VM is the outside host accessing the
internal webservers.

On each inside VM the following commands are necessary to perform the examples in this section:

route delete default
#
route add default 10.10.10.50

On the outside VM perform these commands:

route delete default
#
route add default 198.51.100.50

Also, on each inside VM, edit the nginx index.html page and insert a line of text that has the VM
name or IP address of the VM - something like this:

File: /usr/local/www/nginx/index.html:

<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>
<p> This is VM EXTERNAL1</p>

and start nginx on each inside VM:

service nginx onestart
Performing sanity check on nginx configuration:
nginx: the configuration file /usr/local/etc/nginx/nginx.conf syntax is ok
nginx: configuration file /usr/local/etc/nginx/nginx.conf test is successful
Starting nginx.
#

118

https://man.freebsd.org/cgi/man.cgi?query=ping&sektion=8&format=html

Figure 29. LSNAT Setup Showing All VMs

With no ipfw loaded on the firewall, it should be possible to ping all inside addresses (10.10.10.10,
.20, .30) from the outside host (198.51.100.20). And it should be possible to access each web server
via:

lynx 10.10.10.10 # (or .20 or .30)

5.3.1. Setting up LSNAT- One address (10.10.10.10)

Begin with loading ipfw and ipfw_nat on the firewall VM

kldload ipfw
#
kldload ipfw_nat

The first configuration is similar to static NAT, though from the outside to the inside. The command
redirects incoming traffic from the outside VM sent to destination IP 3.3.3.3 to inside VM
10.10.10.10.

119

ipfw nat 25 config redirect_addr 10.10.10.10 3.3.3.3
ipfw nat 25 config redirect_addr 10.10.10.10 3.3.3.3

Next create a ruleset that utilizes this NAT instance:

ipfw add 50 check-state
ipfw add 1000 nat 25 tcp from any to any
#
ipfw list
00050 check-state :default
01000 nat 25 tcp from any to any
65535 deny ip from any to any
#


Do not use the setup keyword on the ipfw rule referencing LSNAT. The setup
keyword causes the final ACK of the TCP 3-way handshake to be never received
and the connection is never established.

From the outside VM, access the web server using:

lynx 3.3.3.3

brings up the web page on 10.10.10.10.

120

Figure 30. Accessing Nginx on 10.10.10.10 With LSNAT via 3.3.3.3

NAT with one address is working.

5.3.2. Engaging Multiple Hosts With LSNAT

Next, reconfigure the nat 25 instance to utilize all of the inside hosts:

ipfw nat 25 config redirect_addr 10.10.10.10,10.10.10.20,10.10.10.30 3.3.3.3

(Note that adding a modification to a NAT instance just overwrites the existing instance. It does not
create a new instance with the same number.)

On the outside VM, running lynx 3.3.3.3 repeatedly retrieves the home page of each internal server
- in round-robin fashion, without regard for any network load, or server utilization.

 In the lynx browser, reload the current page by pressing Ctl  +  R .

ipfw nat 25 show config
ipfw nat 25 config log redirect_addr 10.10.10.10,10.10.10.20,10.10.10.30 3.3.3.3
#

By adding a rule to redirect icmp traffic, both icmp and tcp will be load shared across the firewall.

121

ipfw add 2000 nat 25 icmp from any to any
#
ipfw list
00050 check-state :default
01000 nat 25 tcp from any to any
02000 nat 25 icmp from any to any
65535 deny ip from any to any

Test this by running tcpdump -n -i em0 on each inside VM, and running ping -c 1 3.3.3.3 on the
outside VM a few times. The incoming ping will hit each inside VM in turn.

However, on running ping 3.3.3.3, the result is that these pings hit only one internal VM. The
reason is that the aliasing engine treats ICMP differently from TCP and UDP. The aliasing engine
recognizes the ICMP id number, and if this number does not change, it uses the same alias. If the
command ping -c 1 3.3.3.3 is used repeatedly, the ICMP id number changes, and this creates a new
entry in the aliasing database resulting in redirection to a different VM.

It is common to want to balance the load across servers according to certain characteristics such as
system load. This is possible - manually - by reconfiguring the NAT statement and adding multiple
instances of the same host to give that host more traffic. Consider this ruleset created with the Unix
line continuation character '\' to close the space between successive IP addresses except for the last
one and the alias address:

ipfw nat 25 config log redirect_addr \
10.10.10.30,\
10.10.10.20,10.10.10.20,\
10.10.10.10,10.10.10.10,10.10.10.10,10.10.10.10 3.3.3.3

This configuration shifts the NAT load heavily toward 10.10.10.10 and moderately toward
10.10.10.20, with 10.10.10.30 having a lot less traffic. Repeat the above single ping example above to
see the result. While this works, it is a bit of a hack.

It would be better to have a range assignment feature similar to the sparse address feature already
in ipfw, something like:

ipfw nat 25 config redirect_addr 10.10.10.0/24{10,20-25,30-50} 3.3.3.3
ipfw: unknown host 10.10.10.0/24{10

but this feature does not work with LSNAT.

However, it is possible to use the prob keyword to address load balancing. In a rule with the prob
keyword, if the rule matches and the probability is "true", the action of the rule is taken and
processing stops for that packet. If the rule matches, and the probability is "not true", the action is
not taken, and processing continues with the next rule. Verify this with a simple test ruleset and the
ucont.sh shell rule from an external host.

122

03000 prob 0.200000 allow udp from any to me 5656 // set probability to 20% chance of
matching
04000 count udp from any to me // count how many were not chosen by
rule 3000
05000 prob 0.400000 allow udp from any to me 5656 // set probability to 40% chance of
matching
06000 count udp from any to me // count how many were not chosen by
3000 and 5000
07000 prob 0.999000 allow udp from any to me 5656 // set probability to 99.9% chance
of matching
08000 count udp from any to me // count how many were not chosen by
all 3 rules
09000 allow udp from any to me 5656 // unconditional matching
65535 deny ip from any to any // default rule deny

After a run of 200 entries from sh ucont.sh 5656 1 the counts are:

03000 47 3314 prob 0.200000 allow udp from any to me 5656
04000 153 10776 count udp from any to me
05000 64 4505 prob 0.400000 allow udp from any to me 5656
06000 89 6271 count udp from any to me
07000 89 6271 prob 0.999000 allow udp from any to me 5656
08000 0 0 count udp from any to me
09000 0 0 allow udp from any to me 5656
65535 0 0 deny ip from any to any

From the above data, out of 200 packets sent from ucont.sh, 47 were matched by rule 3000, but 153
were not matched (rule 4000). Then, 64 were matched at rule 5000, but 89 were not matched.
Finally, 89 where matched at rule 7000.


If there are some packets hitting the default deny rule (65535), delete the host
interface from the bridge and re-run the test. ipfw is then unlikely to have any
stray UDP packets hitting the default rule.

While the above works for UDP, it does not work for TCP. The TCP 3-way handshake is broken
because some packets will match, but others will not.

Other load balancing solutions exist for FreeBSD and those should be used instead.

Other NAT Keywords

The other keywords in the NAT section of ipfw(8) are straightforward:

• deny_in : deny incoming packets

• same_ports : keep the same ports after redirection

• reset : clear the aliasing table when the address changes

• reverse : reverse the direction of the NAT

123

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

• proxy_only : packet aliasing is not performed

• skip_global

• global

• tablearg : discussed in Understanding the Word Tablearg

124

Chapter 6. IPv6 Network Address
Translation (IPv6NAT)
ipfw supports both stateful and stateless IPv6 / IPv4 translation.

From the ipfw(8) man page:

 Stateful translation
 ipfw supports in-kernel IPv6/IPv4 network address and protocol transla-
 tion. Stateful NAT64 translation allows IPv6-only clients to contact
 IPv4 servers using unicast TCP, UDP or ICMP protocols. One or more IPv4
 addresses assigned to a stateful NAT64 translator are shared among sev-
 eral IPv6-only clients. When stateful NAT64 is used in conjunction with
 DNS64, no changes are usually required in the IPv6 client or the IPv4
 server. The kernel module ipfw_nat64 should be loaded or kernel should
 have options IPFIREWALL_NAT64 to be able use stateful NAT64 translator.

Stateful translation is suitable for deployment at the client side or at the service provider, allowing
IPv6-only client hosts to reach remote IPv4-only nodes.

Stateless translation is appropriate when a NAT64 translator is used in front of IPv4-only servers to
allow them to be reached by remote IPv6-only clients.

Specific requirements for these translation services are found in a collection of RFCs:

• Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers -
RFC 6146

• IPv6 Addressing of IPv4/IPv6 Translators - RFC 6052

• IPv6 Address Prefix Reserved for Documentation - RFC 3849

There are a couple of bugs registered for NAT64. See the following: NAT64 https://bugs.freebsd.org/
bugzilla/show_bug.cgi?id=255928 (NAT64 issue on 13.0)

The lab examples for all IPv6 / IPv4 translations will use two new virtual machines:

• dnshost - this virtual machine runs a configured copy of BIND 9. Some experience with DNS
setup with BIND 9 is helpful but not required.

• v6only - this virtual machine only uses IPv6. It is not configured for IPv4 addressing at all.

Readers should have a basic understanding of IPv6 and its addressing characteristics. These
resources may be helpful:

• https://en.wikipedia.org/wiki/IPv6_transition_mechanism

• https://en.wikipedia.org/wiki/IPv6_address

125

https://datatracker.ietf.org/doc/html/rfc6146
https://datatracker.ietf.org/doc/html/rfc6052
https://www.rfc-editor.org/rfc/rfc3849.html
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=255928
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=255928
https://en.wikipedia.org/wiki/IPv6_transition_mechanism
https://en.wikipedia.org/wiki/IPv6_address

6.1. Stateful NAT64 (NAT64LSN) With DNS64
NAT64, described in RFC 6146 is one of a number of transition mechanisms that companies can take
as they introduce IPv6 into their environment, or move wholesale into IPv6 locally. The idea with
NAT64 is to provide a mechanism to allow an IPv6-only host to make a connection to a remote IPv4-
only host. This includes the ability to do a DNS lookup on the remote host, and through the features
of DNS64 (a companion transition service described in RFC 6147), translate a received IPv4 address
into a special IPv6 address that provides a way to connect using the Network Address Translation
variant called NAT64.

A logical view of NAT64 and DNS64 is shown in the figure below:

Figure 31. Logical View of NAT64 and DNS64

The process works like this:

1. An IPv6 only host wants to access a resource from host external1.example.com which only
uses IPv4. A DNS lookup for "external1.example.com" is sent to the locally configured DNS64
server. This lookup is for an "AAAA" record for the external1 VM.

2. The DNS64 server forwards the request to an authoritative server for "example.com".

3. The authoritative server returns an IPv4 address back to the DNS64 server.

4. The DNS64 server converts the IPv4 address into an IPv6 address using the transition service
described in RFC 6147.

5. The IPv6 only host, receives the IPv6 address and sends a connection request (SYN) to its local
IPV6 router running NAT64.

6. The NAT64 router converts the IPv6 packet back to IPv4 and forwards the packet to
external1.example.com.

126

The remaining conversions between the IPv6 VM and external1 VM happen in a similar fashion.

In step 4, the DNS64 server converts the IPv4 address into IPv6 by using the "Well Known Prefix"
64:ff9b:: and encapsulating the IPv6 address into the last 4 octets of the address. In the figure
above, "203.0.113.10" has been converted to "cb00:710a" and added as the last four octets of the new
address.

Note that this is one instance of a larger selection of translation algorithms to translate an IPv4
address into an IPv6 address. In this implementation, the DNS64 server and the authoritative server
are essentially merged together following the description of "Example of 'an IPv6 Network to the
IPv4 Internet' Setup with DNS64 in Stub-Resolver Mode" in Section 7.2 of RFC 6147.

6.1.1. Setting Up for NAT64 / DNS64

To exercise the NAT64 capabilities of ipfw, it is first necessary to restart all lab virtual machines
and reconfigure the ipfw lab.

The figure below shows the new configuration needed.

127

Figure 32. Network Setup for NAT64 and DNS64 Examples

On the FreeBSD host system, the appropriate bridge and tap setup is given by this command:

$ sudo /bin/sh mkbr.sh reset bridge0 tap0 tap1 tap7 bridge1 tap4 tap6 tap8

Start up the required virtual machines with:

$ /bin/sh runvm.sh firewall dnshost external1 v6only

As before, configure all interfaces and ensure connectivity of adjacent interfaces. The firewall VM
should be set for both IPv4 forwarding and IPv6 forwarding:

sysctl net.inet.ip.forwarding=1
sysctl net.inet6.ip6.forwarding=1

128

The external1 VM default route should point to 203.0.113.50 and the v6only host default IPv6 route
should point to 2001:db8:12::50 as follows:

On external1:

route add default 203.0.113.50

On v6only:

route -6 add default 2001:db8:12::50


RFC 5737 describes the use of the 203.0.113.0/24 network for documentation and
example purposes. RFC 3849 describes the use of the 2001:db8::/32 network for the
same purposes.

6.1.2. Setting Up the dnshost VM

First, set up the dnshost VM to provide DNS64 services. ISC’s bind9 (9.18 and above) provides this
capability. Setting up bind9, while not trivial, is not impossible. Install the following packages:

• bind9 Use the latest supported version. The server running here is using bind 9.20.5

• bind-tools Same note as above. The tools used here are bind-tools-9.20.5

These packages will install a modest number of dependencies.

Included with the VM_SCRIPTS, copy the .tgz file ~/ipfw-
primer/ipfw/VM_SCRIPTS/dnshost/dnshost_usrlocaletc_namedb.tgz for the bind9 configuration files
needed. Use the following commands to retrieve and untar the files:

scp user@host:~/ipfw-primer/ipfw/VM_SCRIPTS/dnshost/dnshost_usrlocaletc_namedb.tgz .
tar xvzf dnshost_userlocaletc_namedb.tgz -C /usr/local/etc

This will install all the needed DNS files. Otherwise see the zone files in Appendix E, and try to set
up DNS. Note that the files include a stub root zone. This provides a locally complete DNS setup.

Start the named service with:

service named onestart

There should not be any errors, but if there are, track down and fix.

Test the dnshost configuration with these commands. The first lookup returns the A resource
record with an IPv4 address. The second lookup returns the AAAA resource record with the DNS64

129

configured "Well-known Prefix" 64:ff9b that is used in this section.

root@dnshost:~ # dig @localhost external1.example.com

; <<>> DiG 9.16.27 <<>> @localhost external1.example.com
; (2 servers found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61764
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
; COOKIE: 96f573e1a62ce4380100000062884cacf9b86d6e9f54b542 (good)
;; QUESTION SECTION:
;external1.example.com. IN A

;; ANSWER SECTION:
external1.example.com. 3600 IN A 203.0.113.10

;; Query time: 58 msec
;; SERVER: ::1#53(::1)
;; WHEN: Fri May 20 22:21:32 EDT 2022
;; MSG SIZE rcvd: 94
#
#
root@dnshost:~ # dig @localhost external1.example.com aaaa

; <<>> DiG 9.16.27 <<>> @localhost external1.example.com aaaa
; (2 servers found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5865
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
; COOKIE: 0ad6c60faab12f7f0100000062884cb0be6e6bd00f7e482f (good)
;; QUESTION SECTION:
;external1.example.com. IN AAAA

;; ANSWER SECTION:
external1.example.com. 3600 IN AAAA 64:ff9b::cb00:710a
#

The last test is the most important. The dnshost must return the Well-Known Prefix "64:ff9b::" with

130

the corresponding bits for the embedded IPv4 address. If the test does not return this value,
reconfigure the DNS service (named.conf and the primary forward zone "example.com") to fix.

Since the v6only machine will only ever request AAAA lookups, the configuration is complete for
this section. Ensure that the /etc/resolv.conf file on the v6only VM is correctly configured:

root@v6only: # cat /etc/resolv.conf
nameserver 2001:db8:12::53

root@v6only: #

Next to set up are the firewall, the IPV6 only host v6only, and the external VM host, external1. Test
connectivity without any ipfw running on the firewall host. Refer to the above diagram for
network addressing.

Finally, proceed with the installation of NAT64 on the ipfw firewall.

On the firewall VM:

kldload ipfw

The next line loads the NAT64 module.

kldload ipfw_nat64

Configuring NAT64 is similar to configuring NAT. Create an instance of the NAT64 translator first.

ipfw nat64lsn foo create prefix4 203.0.112.0/24 allow_private

The use of the "allow_private" keyword is required. The ipfw(8) manual page notes that the NAT64
translator, by default, will not handle addresses whose destination matches those listed in RFC
1918. The addressing scheme in this lab uses special purpose addresses as noted in RFC 6890 which
are also considered "private addresses" by the ipfw NAT64 translator.

Note that the prefix4 address pool (203.0.112.0/24 above) should not be manually configured as an
alias on any interface. These addresses are used internally by ipfw. The only requirement is that
they be reserved from deployment elsewhere in the local network so they do not cause a routing
conflict with ipfw. This allows for 254 simultaneous NAT64 addresses. If more are needed due to
high volume, add another prefix4, or increase the existing prefix4 address space.

Continue configuring the NAT64 / DNS64 translator:

ipfw add allow log ipv6-icmp from any to any icmp6types 135,136

131

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

ipfw add nat64lsn foo log ip from 2001:db8:12::/64 to 64:ff9b::/96 in
ipfw add nat64lsn foo log ip from any to 203.0.112.0/24 in
ipfw add allow log ip from any to any

and the direct_output sysctl must be set to 1 (not zero):

sysctl net.inet.ip.fw.nat64_direct_output=1

If desired, also set the nat64_debug sysctl and the firewall verbose sysctl:

sysctl net.inet.ip.fw.nat64_debug=1
sysctl net.inet.ip.fw.verbose=1

Use tail -f /var/log/security to view the nat64lsn translations.

With these prerequisites completed the following tests on the v6only VM should be successful:

root@v6only# ping6 -c 3 64:ff9b::203.0.113.10
PING6(56=40+8+8 bytes) 2001:db8:12::30 --> 64:ff9b::cb00:710a
16 bytes from 64:ff9b::cb00:710a, icmp_seq=0 hlim=63 time=8.401 ms
16 bytes from 64:ff9b::cb00:710a, icmp_seq=1 hlim=63 time=3.429 ms
16 bytes from 64:ff9b::cb00:710a, icmp_seq=2 hlim=63 time=3.398 ms

--- 64:ff9b::203.0.113.10 ping6 statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/std-dev = 3.398/5.076/8.401/2.351 ms

and using lynx to grab the external1.example.com home page should be successful:

[root@v6only ~]# lynx external1.example.com

132

Figure 33. Viewing the IPv4 Webpage of external1 VM from IPv6 v6only VM.

6.1.3. Setting Up for Stateless NAT64 - NAT64STL

The previous ipfw_nat64 examples used "stateful" address translation. ipfw is also capable of
performing "stateless" address translation.

Stateless translation is appropriate when a NAT64 translator is used in front of IPv4-only servers to
allow them to be reached by remote IPv6-only clients. Stateful translation is suitable for
deployment at the client side or at the service provider, allowing IPv6-only client hosts to reach
remote IPv4-only nodes.

Stateless configuration of NAT64 is possible with the same architecture as the previous stateful
example. Configuration details however, are different. In the stateless case, ipfw uses two tables for
translating addresses in either direction: IPv4 → IPv6 and IPv6 → IPv4. A typical configuration is
shown below.

Start fresh

kldunload ipfw_nat64

kldunload ipfw

kldload ipfw

kldload ipfw_nat64

133

Create the tables used for ipfw_nat64stl

ipfw table T4to6 create type addr valtype ipv6

ipfw table T6to4 create type addr valtype ipv4

ipfw table T4to6 add 203.0.112.1 2001:db8:12::6

ipfw table T6to4 add 2001:db8:12::6 203.0.112.1

ipfw nat64stl NAT64 create table4 T4to6 table6 T6to4 allow_private

Add rules for ipfw_nat64stl

ipfw add allow log icmp6 from any to any icmp6types 135, 136

ipfw add nat64stl NAT64 log ip from any to 'table(T4to6)'

ipfw add nat64stl NAT64 log ip6 from 'table(T6to4)' to 64:ff9b::/96

ipfw add allow log ip from any to any

Adjust sysctls

sysctl net.inet.ip.fw.verbose=1

sysctl net.inet.ip.fw.nat64_debug=1

sysctl net.inet.ip.fw.nat64_direct_output=1

Only the net.inet.ip.fw.nat64_direct_output sysctl is required.

Use the same tests as in the stateful NAT64 example:

[root@v6only ~]# ping6 -c 3 64:ff9b::203.0.113.10

and

[root@v6only ~]# lynx external1.example.com

Both tests should be successful.

It may seem limiting to have to use tables to effect communication for stateless NAT64. However, in
considering the architecture involved, the above statements about stateless translation being

134

appropriate when a NAT64 translator is used in front of IPv4-only servers to allow them to be
reached by remote IPv6-only clients makes sense. The entire IPv6 cloud can reach a specified
server.

This can be accomplished by, for example, changing the T4to6 and T6to4 tables to read:

ipfw table T4to6 add 203.0.112.0/31 2001:db8:12::30

ipfw table T6to4 add 2000:0000:0000::/8 203.0.112.0

ipfw table T6to4 add 2100:0000:0000::/8 203.0.112.1

The T4to6 table allocates two addresses in the address pool: 203.0.112.0 and 203.0.112.1. These are
used separately in the T6to4 table to cover vast ranges of IPv6 address space.

Certainly using just one IPv4 pool address is not going to be sufficient to translate such a large
range of IPv6 addresses. The point here is that by carefully constructing the translation pool
addresses and the T4to6 and T6to4 address tables, ipfw can manage translation to as many IPv6
addresses as needed.

Note that stateless NAT64 shares the same limitations of stateful NAT64.

Next is the most important IPv6 / IPv4 translation mechanism NAT64 CLAT.

6.2. 464XLAT

ipfw supports 464XLAT (RFC 6877) calling it "XLAT464 CLAT". This transition mechanism provides
connectivity for IPv4 edge devices across an IPv6 only network. It does this by combining stateful
translation in the core and stateless translation at the edge. 464XLAT only supports IPv4 in the
client-server model, so it does not support IPv4 peer-to-peer communication or inbound IPv4
connections.



See diagrams and explanation here: https://www.juniper.net/documentation/us/en/
software/junos/interfaces-adaptive-services/topics/topic-map/ipv4-connect-ipv6-
464xlat.html#id-464xlat-overview

The RFC for this mechanism is more enlightening. See RFC 6877

The discussion on Wikipedia is somewhat sparse:

464XLAT

464XLAT (RFC 6877) allows clients on IPv6-only networks to access IPv4-only Internet
services, such as Skype.[13][14]

135

https://www.juniper.net/documentation/us/en/software/junos/interfaces-adaptive-services/topics/topic-map/ipv4-connect-ipv6-464xlat.html#id-464xlat-overview
https://www.juniper.net/documentation/us/en/software/junos/interfaces-adaptive-services/topics/topic-map/ipv4-connect-ipv6-464xlat.html#id-464xlat-overview
https://www.juniper.net/documentation/us/en/software/junos/interfaces-adaptive-services/topics/topic-map/ipv4-connect-ipv6-464xlat.html#id-464xlat-overview
https://datatracker.ietf.org/doc/html/rfc6877

The client uses a SIIT translator to convert packets from IPv4 to IPv6.
These are then sent to a NAT64 translator which translates them from IPv6 back into
IPv4 and on to an IPv4-only server.
The client translator may be implemented on the client itself or on an intermediate
device and is known as the CLAT (Customer-side transLATor).
The NAT64 translator, or PLAT (Provider-side transLATor), must be able to reach both
the server and the client (through the CLAT).
The use of NAT64 limits connections to a client-server model using UDP, TCP, and ICMP.

The figure below shows a diagram for implementing 464XLAT.

136

Figure 34. ipfw 464XLAT Design

As earlier, shutdown all virtual machines and for this example, reset all the bridge and tap devices
to the new architecture.

This example will require two firewalls. The firewall VM and firewall2 VM will both be used as

137

shown in the diagram. In this example, the firewall VM is the CLAT translator (stateless translation)
and the firewall2 VM is the PLAT translator (stateful translation).

To start, set up the bridge and tap interfaces with this command on the FreeBSD host:

$ sudo /bin/sh mkbr.sh reset bridge0 tap0 tap1 tap11 bridge1 tap4 tap6 tap7 tap9 \
 bridge2 tap2 tap8 tap10

Start up the virtual machines with:

$ /bin/sh runvm.sh external1 firewall firewall2 dnshost v6only external2

As earlier, configure all interfaces according to the diagram and ensure connectivity with adjacent
interfaces.

This example is more complex than past examples. There are a number of additional configuration
steps needed as follows:

• external1.example.com

On external1.example.com:

route add default 192.168.1.1
echo "nameserver 192.168.1.53" > /etc/resolv.conf
echo "nameserver 203.0.113.53" >> /etc/resolv.conf

• firewall.example.com

On firewall.example.com:

/bin/sh /root/bin/bsdclat464.sh
echo "nameserver 2001:db8:12::53" > /etc/resolv.conf
echo "nameserver 192.168.1.53" >> /etc/resolv.conf
route -6 add 2001:db8:bbbb::/96 2001:db8:12::1
sysctl net.inet.ip.forwarding=1
sysctl net.inet6.ip6.forwarding=1
sysctl net.inet.ip.fw.verbose=1
sysctl net.inet.ip.fw.nat64_direct_output=1

• firewall2.example.com

On firewall2.example.com

/bin/sh /root/bin/bsdplat464.sh

138

route -6 add 2001:db8:aaaa::/96 2001:db8:12::2
echo "nameserver 2001:db8:12::53" > /etc/resolv.conf
sysctl net.inet.ip.forwarding=1
sysctl net.inet6.ip6.forwarding=1
sysctl net.inet.ip.fw.verbose=1
sysctl net.inet.ip.fw.nat64_direct_output=1

• external2.example.com

On external2.example.com

route add default 203.0.113.1
echo "nameserver 203.0.113.53" > /etc/resolv.conf
service nginx onestart

• dnshost.example.com

The DNS64 capability is not used for this example.

On dnshost.example.com:

Remove DNS64:

vi /usr/local/etc/namedb/named.conf

 Comment out the dns64 clause in the options section:
 . . .
 // dns64 64:FF9B::/96 {
 // clients { any; };
 // exclude { 64:FF9B::/96; ::ffff:0000:0000/96; };
 // suffix ::;
 // };
 . . .

echo "nameserver 127.0.0.1" > /etc/resolv.conf
echo "nameserver 2001:db8:12::53" >> /etc/resolv.conf
service named onestart
route add default 203.0.113.1
route add -net 192.168.1.0/24 192.168.1.1
sysctl net.inet.ip.forwarding=0
sysctl net.inet6.ip6.forwarding=0

• v6only.example.com

139

On v6only.example.com:

echo "nameserver 2001:db8:12::53" > /etc/resolv.conf
route -6 add 2001:db8:bbbb::/96 2001:db8:12::1
route -6 add 2001:db8:aaaa::/96 2001:db8:12::2

Due to the complex nature of these ipfw configurations, the bsdclat464.sh and bsdplat464.sh
scripts are provided. However, do try to understand the configration details.

Once all the above commands are entered on their respective VMs, test the configuration with a
ping from the external1 VM to the external2 VM:

root@external1:# ping -c 2 external2.example.com
PING external2.example.com (203.0.113.20): 56 data bytes
64 bytes from 203.0.113.20: icmp_seq=0 ttl=62 time=5.578 ms
64 bytes from 203.0.113.20: icmp_seq=1 ttl=62 time=8.002 ms

--- external2.example.com ping statistics ---
2 packets transmitted, 2 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 5.578/6.790/8.002/1.212 ms
root@external1:#

While the above results look unremarkable, what has actually happened is that an IPV4 host (the
external1 VM) initiated an IPV4 communication (ping) to the IPV4 external2 VM. This
communication was translated into IPV6 by the edge firewall VM and forwarded over the IPV6
network to the firewall2 VM which translated it back to IPv4 and forwarded it to the external1
VM. The IPV4 reply took a similar path, getting translated into IPV6 and routed over the IPV6
network. The packet was finally translated back to IPv4 by the edge device, firewall VM.

The snippets below show at each step, how the request was transformed.


The examples below are taken from multiple different invocations of the ping
command. However, the data transformations are correct.

On interface em0 on the firewall VM:

root@firewall:~/bin # tcpdump -n -i em0
tcpdump: verbose output suppressed, use -v[v]... for full protocol decode
listening on em0, link-type EN10MB (Ethernet), snapshot length 262144 bytes
14:38:07.254114 IP 192.168.1.2 > 203.0.113.20: ICMP echo request, id 46395, seq 0,
length 64
14:38:07.256893 IP 203.0.113.20 > 192.168.1.2: ICMP echo reply, id 46395, seq 0,
length 64
14:38:08.322597 IP 192.168.1.2 > 203.0.113.20: ICMP echo request, id 46395, seq 1,
length 64

140

14:38:08.326715 IP 203.0.113.20 > 192.168.1.2: ICMP echo reply, id 46395, seq 1,
length 64

On interface em1 on the firewall VM:

root@firewall:~/bin # tcpdump -n -i em1
tcpdump: verbose output suppressed, use -v[v]... for full protocol decode
listening on em1, link-type EN10MB (Ethernet), snapshot length 262144 bytes
14:54:45.140746 IP6 2001:db8:aaaa::c0a8:102 > 2001:db8:bbbb::cb00:7114: ICMP6, echo
request, id 38233, seq 0, length 64
14:54:45.142995 IP6 2001:db8:bbbb::cb00:7114 > 2001:db8:aaaa::c0a8:102: ICMP6, echo
reply, id 38233, seq 0, length 64
14:54:46.171754 IP6 2001:db8:aaaa::c0a8:102 > 2001:db8:bbbb::cb00:7114: ICMP6, echo
request, id 38233, seq 1, length 64
14:54:46.173925 IP6 2001:db8:bbbb::cb00:7114 > 2001:db8:aaaa::c0a8:102: ICMP6, echo
reply, id 38233, seq 1, length 64

On interface em0 on the firewall2 VM:

root@firewall2:~/bin # tcpdump -n -i em0
tcpdump: verbose output suppressed, use -v[v]... for full protocol decode
listening on em0, link-type EN10MB (Ethernet), snapshot length 262144 bytes
14:57:32.519334 IP6 2001:db8:aaaa::c0a8:102 > 2001:db8:bbbb::cb00:7114: ICMP6, echo
request, id 17270, seq 0, length 64
14:57:32.529066 IP6 2001:db8:bbbb::cb00:7114 > 2001:db8:aaaa::c0a8:102: ICMP6, echo
reply, id 17270, seq 0, length 64
14:57:33.560392 IP6 2001:db8:aaaa::c0a8:102 > 2001:db8:bbbb::cb00:7114: ICMP6, echo
request, id 17270, seq 1, length 64
14:57:33.561596 IP6 2001:db8:bbbb::cb00:7114 > 2001:db8:aaaa::c0a8:102: ICMP6, echo
reply, id 17270, seq 1, length 64

On interface em1 on the firewall2 VM:

root@firewall2:~/bin # tcpdump -n -i em1
tcpdump: verbose output suppressed, use -v[v]... for full protocol decode
listening on em1, link-type EN10MB (Ethernet), snapshot length 262144 bytes
14:58:37.139612 IP 203.0.112.22 > 203.0.113.20: ICMP echo request, id 1025, seq 0,
length 64
14:58:37.141043 IP 203.0.113.20 > 203.0.112.22: ICMP echo reply, id 1025, seq 0,
length 64
14:58:38.187477 IP 203.0.112.22 > 203.0.113.20: ICMP echo request, id 1025, seq 1,
length 64
14:58:38.188308 IP 203.0.113.20 > 203.0.112.22: ICMP echo reply, id 1025, seq 1,
length 64

On interface em0 on the external2 VM:

root@external2:~ # tcpdump -n -i em0
tcpdump: verbose output suppressed, use -v[v]... for full protocol decode
listening on em0, link-type EN10MB (Ethernet), snapshot length 262144 bytes
15:00:44.171439 IP 203.0.112.22 > 203.0.113.20: ICMP echo request, id 1024, seq 0,

141

length 64
15:00:44.172313 IP 203.0.113.20 > 203.0.112.22: ICMP echo reply, id 1024, seq 0,
length 64
15:00:45.200883 IP 203.0.112.22 > 203.0.113.20: ICMP echo request, id 1024, seq 1,
length 64
15:00:45.201035 IP 203.0.113.20 > 203.0.112.22: ICMP echo reply, id 1024, seq 1,
length 64

The firewall log sysctl was reset to log to syslogd(8) and captured these logs:

Logs on the firewall VM:

root@firewall:~/bin # cat /var/log/security
Dec 2 15:14:04 firewall kernel: ipfw: 150 Eaction nat64clat ICMP:8.0 192.168.1.2
203.0.113.20 in via em0
Dec 2 15:14:04 firewall kernel: ipfw: 150 Eaction nat64clat ICMPv6:129.0
[2001:db8:bbbb::cb00:7114] [2001:db8:aaaa::c0a8:102] in via em1
Dec 2 15:14:04 firewall kernel: ipfw: 150 Eaction nat64clat ICMP:8.0 192.168.1.2
203.0.113.20 in via em0
Dec 2 15:14:05 firewall kernel: ipfw: 150 Eaction nat64clat ICMPv6:129.0
[2001:db8:bbbb::cb00:7114] [2001:db8:aaaa::c0a8:102] in via em1
Dec 2 15:14:08 firewall kernel: ipfw: 100 Accept ICMPv6:135.0 [2001:db8:12::1]
[2001:db8:12::2] in via em1
Dec 2 15:14:08 firewall kernel: ipfw: 100 Accept ICMPv6:136.0 [2001:db8:12::2]
[2001:db8:12::1] out via em1
Dec 2 15:14:09 firewall kernel: ipfw: 100 Accept ICMPv6:135.0 [2001:db8:12::2]
[2001:db8:12::1] out via em1
Dec 2 15:14:09 firewall kernel: ipfw: 100 Accept ICMPv6:136.0 [2001:db8:12::1]
[2001:db8:12::2] in via em1

Logs on the firewall2 VM:

root@firewall2:~/bin # cat /var/log/security
Dec 2 15:10:25 firewall2 kernel: ipfw: 300 Eaction nat64lsn ICMPv6:128.0
[2001:db8:aaaa::c0a8:102] [2001:db8:bbbb::cb00:7114] in via em0
Dec 2 15:10:25 firewall2 kernel: ipfw: 400 Eaction nat64lsn ICMP:0.0 203.0.113.20
203.0.112.22 in via em1
Dec 2 15:10:26 firewall2 kernel: ipfw: 300 Eaction nat64lsn ICMPv6:128.0
[2001:db8:aaaa::c0a8:102] [2001:db8:bbbb::cb00:7114] in via em0
Dec 2 15:10:26 firewall2 kernel: ipfw: 400 Eaction nat64lsn ICMP:0.0 203.0.113.20
203.0.112.22 in via em1
Dec 2 15:10:29 firewall2 kernel: ipfw: 100 Accept ICMPv6:135.0 [2001:db8:12::1]
[2001:db8:12::2] out via em0
Dec 2 15:10:29 firewall2 kernel: ipfw: 100 Accept ICMPv6:136.0 [2001:db8:12::2]
[2001:db8:12::1] in via em0
Dec 2 15:10:30 firewall2 kernel: ipfw: 100 Accept ICMPv6:135.0 [2001:db8:12::2]
[2001:db8:12::1] in via em0
Dec 2 15:10:30 firewall2 kernel: ipfw: 100 Accept ICMPv6:136.0 [2001:db8:12::1]

142

https://man.freebsd.org/cgi/man.cgi?query=syslogd&sektion=8&format=html

[2001:db8:12::2] out via em0

Finally, a webpage request was made with:

lynx external2.example.com

as shown below:

Figure 35. Retrieving the Webpage at external2.example.com



As noted in the Juniper documentation link above, "464XLAT only supports IPv4 in
the client-server model, so it does not support IPv4 peer-to-peer communication or
inbound IPv4 connections." Other technologies provide peer-to-peer
communications.

143

Chapter 7. Other Keywords
This section covers some other lesser used keywords.

7.1. abort / abort6

The abort and abort6 keywords interrupt the data stream between two endpoints. The effect of
this keyword, is similar to the reset keyword, but there are important differences.

Figure 36. Abort and abort6 keywords

The above figure shows the effect of inserting the firewall rule:

ipfw add 50 abort tcp from 203.0.113.30 to me

Unlike the reset keyword, there is no packet sent from the firewall to the source. What happens is
that ipfw just starts dropping packets that match the rule. Since there are no more replies coming
from the destination (here the firewall itself), the source endpoint issues retransmissions over and
over. Eventually the source concludes that the connection is irrevocably broken and it closes the
connection.


In the rule above, all TCP connections will be interrupted between the two
systems.


In a TCP connection, ipfw will use dynamic rules if a check-state rule is already in
place. If this is the case, issue the abort rule at a rule number before the check-
state rule. Otherwise, it will have no effect.

7.2. mark / setmark

The setmark keyword functions similar to the tag keyword. If the packet matches the rule, ipfw
applies a 32-bit identifier to the packet. This identifier (the "mark") is held with the packet
internally inside ipfw. It is not sent with the packet on the wire and is not visible to any network

144

monitoring from tools like tcpdump(1) or wireshark(1).

Like tags, a mark can be used as another filtering device with other ipfw rules to do policy based
routing or filtering. Note that only one mark can be applied at a time.

A big advantage of marks over tags are their ability to be matched as a lookup key in a table. Also, a
mark can have a bitmask applied to it.

To explore mark and setmark, use the architecture of Simple NAT shown in Simple NAT. Begin by
creating the network with the mkbr.sh script and starting the VMs with the runvm.sh script shown
in Simple NAT.

sudo /bin/sh mkbr.sh reset bridge0 tap1 tap4 bridge1 tap0 tap5
/bin/sh runvm.sh firewall external1 internal

Assign the IP addresses as shown, and ensure all VMs have connectivity with adjacent systems.

On the internal VM, start up the userv.sh script with port number 5656. Then, on the external1
VM, start up the ucont.sh server with the same port and a time value of 1 second. With no ipfw
module loaded, the communications should succeed.


It may be necessary to examine the ucont.sh script and assign the correct address
for the connection.

Before placing a setmark value on a packet, load the ipfw module and redirect the output of the
ipfw log by setting the sysctl to log to syslog:

kldload ipfw
sysctl net.inet.ip.fw.verbose=1

Now insert the following firewall rules and examine the log file /var/log/security:

ipfw add 1000 allow log udp from any to 10.10.10.20 dst-port 5656
01000 allow log udp from any to 10.10.10.20 5656
#
tail -f /var/log/security
Dec 29 22:32:33 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:30463
10.10.10.20:5656 in via em1
Dec 29 22:32:33 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:30463
10.10.10.20:5656 out via em0
Dec 29 22:32:36 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:24588
10.10.10.20:5656 in via em1

145

https://man.freebsd.org/cgi/man.cgi?query=tcpdump&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=wireshark&sektion=1&format=html

Dec 29 22:32:36 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:24588
10.10.10.20:5656 out via em0

Now add the following rule to apply the mark value of 20 (decimal) and observe the change in the
logs:

ipfw add 500 setmark 20 log udp from any to 10.10.10.20 dst-port 5656
00500 setmark 0x14 log udp from any to 10.10.10.20 5656
#
tail -f /var/log/security
Dec 29 22:41:20 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:27955
10.10.10.20:5656 in via em1
Dec 29 22:41:20 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:27955
10.10.10.20:5656 out via em0
Dec 29 22:41:23 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:37423
10.10.10.20:5656 in via em1
Dec 29 22:41:23 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:37423
10.10.10.20:5656 out via em0
Dec 29 22:41:25 firewall kernel: ipfw: 500 SetMark 0x14 UDP 203.0.113.10:45176
10.10.10.20:5656 in via em1
Dec 29 22:41:25 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:45176
10.10.10.20:5656 mark:0x14 in via em1
Dec 29 22:41:25 firewall kernel: ipfw: 500 SetMark 0x14 UDP 203.0.113.10:45176
10.10.10.20:5656 out via em0
Dec 29 22:41:25 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:45176
10.10.10.20:5656 mark:0x14 out via em0
Dec 29 22:41:27 firewall kernel: ipfw: 500 SetMark 0x14 UDP 203.0.113.10:21444
10.10.10.20:5656 in via em1
Dec 29 22:41:27 firewall kernel: ipfw: 1000 Accept UDP 203.0.113.10:21444
10.10.10.20:5656 mark:0x14 in via em1

7.3. NPTv6

IPv6-to-IPv6 Network Prefix Translation (NPTv6) is the process of translating IPv6 header source
and destination addresses. Functionally, it is similar to the more well understood Network Address
Translation, but without the need to maintain state. It is only the IPv6 source and destination
addresses that are translated. The idea here is to allow an edge network to have its own
independent addressing scheme while being able to exchange IPv6 traffic with external IPv6
networks through the use of an NPTv6 Translator

RFC 6296 is the definitive document on NPTv6. The example in this section is taken from Sections
2.1 of that document.

The architecture for these examples is based on Simple NAT as in the previous section.

146

https://www.rfc-editor.org/rfc/rfc6296.html

7.3.1. NPTv6 Setup

Use the setup instructions shown in Simple NAT but use the IPv6 addressing as shown below:

Figure 37. NPTv6 Simple Case

At first glance, this appears to be a simple IPv6 forwarding example. However in this case, NPTv6
changes the actual packet source and destination addresses, so no forwarding is needed.

ipfw(8) explains the syntax of the NPTv6 command and options, but there are a number of details
that need to be set up correctly. Use the following as a guide:

On the FreeBSD host:

147

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

$ sudo /bin/sh mkbr.sh reset bridge0 tap1 tap4 bridge1 tap0 tap5
$ /bin/sh runvm.sh external1 firewall internal

Ensure all IPv6 addresses on all VMs are set up correctly.

On the firewall VM:

kldunload ipfw_nptv6
kldunload ipfw

kldload ipfw
kldload ipfw_nptv6

sysctl net.inet.ip.fw.one_pass=0
sysctl net.inet.ip.fw.verbose=1

ipfw -q flush

Set up the NPTv6 instance.
ipfw nptv6 foo create int_prefix fd01:0203:0405:: ext_prefix 2001:0db8:0001::
prefixlen 48

Rules for nptv6
ipfw add 500 allow log ipv6-icmp from any to any icmp6types 135,136 // allow
neighbor solicitation
*ipfw add 2000 nptv6 foo log ip6 from fd01:0203:0405::/48 to any
ipfw add 3000 allow ip6 from any to any

As noted in ipfw(8), the sysctl net.inet6.ip6.forwarding=1 must be applied or NPTv6 will silently
stop working.

7.3.2. NPTv6 Testing

Set up a UDP listener on the external1 VM. Using the userv.sh (and its ucon.sh partner) is possible,
but that would require editing the scripts to set up an IPv6 address. Try this method instead:

On the external1 VM:
Listen for a UDP packet
$ ncat -l -k -u -6 2001:0db8:0001::10 5656

On the internal VM:
Set up the default route for IPv6
route -6 add default fd01:0203:0405::0050
#
Send the desired UDP packet.
$ echo "testing123" | ncat -6 -u 2001:0db8:0001::10 5656

148

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

In the setup section above, logging to syslogd was set up, so the results can be seen by examining
the tail end of /var/log/security:

Dec 31 19:51:44 firewall kernel: ipfw: 2000 Eaction nptv6 UDP [fd01:203:405::20]:52451
[2001:db8:1::10]:5656 in via em0

The output of a tcpdump on external1 shows:

root@external1:~ # tcpdump -n -i em0 -X "udp"
tcpdump: verbose output suppressed, use -v[v]... for full protocol decode
listening on em0, link-type EN10MB (Ethernet), snapshot length 262144 bytes
19:51:43.827543 IP6 2001:db8:1:d54f::20.52451 > 2001:db8:1::10.5656: UDP, length 11
 0x0000: 600a 145a 0013 113f 2001 0db8 0001 d54f `..Z...?.......O
 0x0010: 0000 0000 0000 0020 2001 0db8 0001 0000
 0x0020: 0000 0000 0000 0010 cce3 1618 0013 f72b +
 0x0030: 7465 7374 696e 6731 3233 0a testing123.

The highlighted section shows the effect of the NPTv6 translation. (See RFC 6296, Section 3, for
details.)

7.4. ipttl

The ipttl (Time to Live or TTL) keyword identifies packets that have specific TTL characteristics.
ipfw(8) notes that the ipttl keyword will accept a single value, a list of values, or a range of values,
in the same syntax as that used for the ports keyword. (Recall the discussion of lists and ranges in
the Notes on Rule Numbering.)

ipttl is one of a number of ipfw keywords that work on individual fields of packets flowing through
the firewall. Similar keywords include ipid, iplen, ipprecedence, etc. The ipttl keyword controls
the lifetime of the packet on the network (see below).

7.4.1. ipttl Setup

Use the setup instructions shown in Simple NAT with IPv4 addressing, not IPv6.

Also, this example will use the hping3 command. (To downloaded the hping3 package, reset the
internal VM for access to the Internet, and download the package with pkg install hping3.
Remember to reset for Simple NAT IP addressing for this example.)

Refer to hping3(8) for details.

149

https://www.rfc-editor.org/rfc/rfc6296.html
https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=hping3&sektion=8&format=html

On the external1 VM:

Listen for a UDP packet
ncat -l -k -u 203.0.113.10 5656

On the internal VM:

Send the desired UDP packet.
Now, deliberately set the initial TTL to 13.
hping3 --sign "test for ttl 13" --count 1 --udp --ttl 13 --destport 5656
203.0.113.10

Without ipfw in place, the result should be similar to:

root@external1:~ # tcpdump -n -i em0 -X -vv "udp"
tcpdump: listening on em0, link-type EN10MB (Ethernet), snapshot length 262144 bytes
14:49:16.658160 IP (tos 0x0, ttl 12 , id 6642, offset 0, flags [none], proto UDP (17),
length 43)
 10.10.10.20.2472 > 203.0.113.10.5656: [udp sum ok] UDP, length 15
 0x0000: 4500 002b 19f2 0000 0c11 44a8 0a0a 0a14 E..+......D.....
 0x0010: cb00 710a 09a8 1618 0017 3013 7465 7374 ..q.......0.test
 0x0020: 2066 6f72 2074 746c 2031 3300 0000 .for.ttl.13...

The IP Time to Live option was set up to prevent IP packets from bouncing around the Internet
forever. RFC 791 initially intended that the value would be considered an actual time value
(number of seconds) and that each module processing the packet would subtract processing time
from the initial value. This was later changed to an integer identifying a "hop count" where the
initial value (now 64) is decremented by every router or gateway or forwarding device, such as a
firewall.

In this case the firewall VM, even though it is not running firewall software, is still a 'forwarding
device' and decrements the count as it forwards the packet.

7.4.2. ipttl Testing

To examine the ipttl keyword follow this example:

kldload ipfw
sysctl net.inet.ip.fw.verbose=1

Count all packets as the flow through
ipfw add 800 count ip from any to any

Count all packets with TTL of exactly 13 as they enter em0.
ipfw add 900 count ip from any to any ipttl 13

150

https://www.ietf.org/rfc/rfc791.txt

Allow and log packets with TTL of exactly 13 as they enter em0.
ipfw add 1000 allow log udp from any to any ipttl 13

Just before the packet exits, the IP stack decrements the ttl,
so the following rule is also needed for the packet to exit out em1.
ipfw add 1050 allow log udp from any to any ipttl 12

Count any other ip packets after the ipttl rule
ipfw add 1100 count ip from any to any

Below is a sample run of ncat and hping3 commands to test the above rules:

echo "UDP with default TTL" | ncat -u 203.0.113.10 5656
echo "UDP with default TTL" | ncat -u 203.0.113.10 5656

hping3 --sign "UDP with TTL=13" --count 1 --udp --ttl 13 --destport 5656
203.0.113.10
hping3 --sign "UDP with TTL=13" --count 1 --udp --ttl 13 --destport 5656
203.0.113.10

The results show the first two packets with default TTL values (64) were not passed by the firewall.
The third and fourth packets were passed. The traces below show the input packet in interface em0
with ttl 13, and the output packet on em1 with ttl 12.

tcpdump -n -i em0 -X -vvv "udp"
tcpdump: listening on em0, link-type EN10MB (Ethernet), snapshot length 262144 bytes
03:26:42.875634 IP (tos 0x0, ttl 13 , id 17385, offset 0, flags [none], proto UDP (17),
length 43)
 10.10.10.20.1648 > 203.0.113.10.5656: [udp sum ok] UDP, length 15
 0x0000: 4500 002b 43e9 0000 0c11 1ab1 0a0a 0a14 E..+C...........
 0x0010: cb00 710a 0670 1618 0017 1d07 5544 5020 ..q..p......UDP.
 0x0020: 7769 7468 2054 544c 3d31 3300 0000 with.TTL=13...
#
#
tcpdump -n -i em1 -X -vvv "udp"
tcpdump: listening on em1, link-type EN10MB (Ethernet), snapshot length 262144 bytes
03:27:37.903863 IP (tos 0x0, ttl 12 , id 33936, offset 0, flags [none], proto UDP (17),
length 43)
 10.10.10.20.2539 > 203.0.113.10.5656: [udp sum ok] UDP, length 15
 0x0000: 4500 002b 8490 0000 0c11 da09 0a0a 0a14 E..+............
 0x0010: cb00 710a 09eb 1618 0017 198c 5544 5020 ..q.........UDP.
 0x0020: 7769 7468 2054 544c 3d31 3300 0000 with.TTL=13...

151

7.5. tcpdatalen

The tcpdatalen keyword is one of several related keywords:

• tcpack, tcpdatalen, tcpflags, tcpmss, tcpseq, tcpwin, tcpoptions

These keywords are not often used.

However, there is one very important use case. From time to time, an Internet worm - a malicious
packet that gets resent to all local and remote hosts matching some criteria - makes its way onto the
Internet. Quick thinking network security administrators can sometimes identify a unique
characteristic of these malicious packets such as all packets having the same length - akin to
tcpdatalen, or a certain set of tcpoptions.

In this example, the firewall VM is running the tserv.sh 5656 script.


It may be necessary to edit the tserv.sh script to listen on the correct interface
(em1) for this example.

The example below, using the Simple NAT setup and addressing, configures ipfw to deny all packets
having a TCP data length of a certain value range. But, it also allows the completion of the TCP 3-
way handshake. When the handshake is completed, one of these ranges will cause the malicious
packet to be denied. Keep in mind, this is the length of the TCP data payload, not the overall length
of the packet.

ipfw -q flush
ipfw add 10 deny tcp from any to me tcpdatalen 10-19
ipfw add 20 deny tcp from any to me tcpdatalen 20-29
ipfw add 30 deny tcp from any to me tcpdatalen 30-39
ipfw add 40 deny tcp from any to me tcpdatalen 40-49
ipfw add 50 deny tcp from any to me tcpdatalen 50-59
ipfw add 60 deny tcp from any to me tcpdatalen 60-69
ipfw add 70 deny tcp from any to me tcpdatalen 70-79
ipfw add 80 deny tcp from any to me tcpdatalen 80-89
ipfw add 90 deny tcp from any to me tcpdatalen 90-99
ipfw add 500 check-state
ipfw add 1000 allow tcp from any to any 5656 setup keep-state
#
ipfw show
00010 0 0 deny log tcp from any to me tcpdatalen 10-19
00020 0 0 deny log tcp from any to me tcpdatalen 20-29
00030 0 0 deny log tcp from any to me tcpdatalen 30-39
00040 0 0 deny log tcp from any to me tcpdatalen 40-49
00050 0 0 deny log tcp from any to me tcpdatalen 50-59
00060 0 0 deny log tcp from any to me tcpdatalen 60-69
00070 0 0 deny log tcp from any to me tcpdatalen 70-79
00080 0 0 deny log tcp from any to me tcpdatalen 80-89
00090 0 0 deny log tcp from any to me tcpdatalen 90-99

152

00500 0 0 check-state :default
01000 0 0 allow log tcp from any to any setup keep-state :default
65535 0 0 deny ip from any to any

And a test using ncat directly from external1:

echo "1234567890123456789012345678901234" | ncat 203.0.113.50 5656

The TCP 3-way handshake completes, but the packet containing the data payload is stopped by rule
30 as shown below:

ipfw show
00010 0 0 deny log tcp from any to me tcpdatalen 10-19
00020 0 0 deny log tcp from any to me tcpdatalen 20-29
00030 13 1066 deny log tcp from any to me tcpdatalen 30-39
00040 0 0 deny log tcp from any to me tcpdatalen 40-49
00050 0 0 deny log tcp from any to me tcpdatalen 50-59
00060 0 0 deny log tcp from any to me tcpdatalen 60-69
00070 0 0 deny log tcp from any to me tcpdatalen 70-79
00080 0 0 deny log tcp from any to me tcpdatalen 80-89
00090 0 0 deny log tcp from any to me tcpdatalen 90-99
00500 0 0 check-state :default
01000 8 420 allow log tcp from any to any 5656 setup keep-state :default
65535 0 0 deny ip from any to any

The reason for the excessive number of packets denied is TCP retransmission trying to account for
the dropped packet as shown in the wireshark(1) trace below.

Figure 38. Denying Packet Based on TCP Data Length

Eventually TCP gives up and shuts down the connection.

7.6. verrevpath / versrcreach / antispoof

These keywords all work to determine if an incoming packet is legitimate.

153

https://man.freebsd.org/cgi/man.cgi?query=wireshark&sektion=1&format=html

As noted in ipfw(8), verrevpath ("verify reverse path") looks up the incoming packet’s source
address in the routing table.

Quoting: "If the interface on which the packet entered the system matches the outgoing interface for
the route, the packet matches. If the interfaces do not match up, the packet does not match. All
outgoing packets or packets with no incoming interface match."

Setting up on the FreeBSD host:

% cd ~/ipfw-primer/ipfw/HOST_SCRIPTS
% sudo /bin/sh mkbr.sh reset bridge0 tap0 tap5 bridge1 tap4 tap1
% /bin/sh runvm.sh external1 firewall internal

Consider the figure below (same as Simple NAT):

154

https://man.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8&format=html

Figure 39. verrevpath Example

In this figure, the firewall has interface em0 directly connected to the 10.10.10.0/24 network and
the em1 interface directly connected to the 203.0.113.0/24 network.

The firewall VM interfaces and routing table are shown in the text below:

root@firewall:~ # ifconfig em0
em0: flags=1008843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST,LOWER_UP> metric 0 mtu 1500

options=48525bb<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,JUMBO_MTU,VLAN_HWCSUM,TSO4,LRO,W
OL_MAGIC,VLAN_HWFILTER,VLAN_HWTSO,HWSTATS,MEXTPG>
 ether 02:49:50:46:57:41
 inet 10.10.10.50 netmask 0xffffff00 broadcast 10.10.10.255
 media: Ethernet autoselect (1000baseT <full-duplex>)

155

 status: active
 nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
root@firewall:~ #
root@firewall:~ # ifconfig em1
em1: flags=1008843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST,LOWER_UP> metric 0 mtu 1500

options=48525bb<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,JUMBO_MTU,VLAN_HWCSUM,TSO4,LRO,W
OL_MAGIC,VLAN_HWFILTER,VLAN_HWTSO,HWSTATS,MEXTPG>
 ether 02:49:50:46:57:42
 inet 203.0.113.50 netmask 0xffffff00 broadcast 203.0.113.255
 media: Ethernet autoselect (1000baseT <full-duplex>)
 status: active
 nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
root@firewall:~ #
root@firewall:~ # netstat -rn
Routing tables

Internet:
Destination Gateway Flags Netif Expire
10.10.10.0/24 link#1 U em0
10.10.10.50 link#3 UHS lo0
127.0.0.1 link#3 UH lo0
203.0.113.0/24 link#2 U em1
203.0.113.50 link#3 UHS lo0

Internet6:
Destination Gateway Flags Netif Expire
::/96 link#3 URS lo0
::1 link#3 UHS lo0
::ffff:0.0.0.0/96 link#3 URS lo0
fe80::%lo0/10 link#3 URS lo0
fe80::%lo0/64 link#3 U lo0
fe80::1%lo0 link#3 UHS lo0
ff02::/16 link#3 URS lo0
root@firewall:~ #

If a packet came in on the em0 interface with a source address that was not in the 10.10.10.0/24
network, the above quote says the packet should be dropped.

The following example tests this with the ncat program which has an option to set the source IP.

First, set up ipfw on the firewall VM to allow any UDP packets as shown.

Then, set up the firewall VM to run sh userv.sh 5656, the service to receive UDP packets on the
identified port. Next, send one packet from the internal VM with echo "hello from internal VM" |
ncat -u 10.10.10.50 5656.

root@firewall:~/bin # ipfw add 1000 allow udp from any to me verrevpath
01000 allow udp from any to me verrevpath
root@firewall:~/bin #

156

root@firewall:~/bin # ipfw show
01000 0 0 allow udp from any to me verrevpath
65535 0 0 deny ip from any to any
root@firewall:~/bin #
root@firewall:~/bin # sh userv.sh 5656
PORT1 = [5656]
Starting UDP listener on [10.10.10.50],[5656]
hello from internal VM
^Croot@firewall:~/bin #
root@firewall:~/bin # ipfw show
01000 1 51 allow udp from any to me verrevpath
65535 0 0 deny ip from any to any
root@firewall:~/bin #

So far, so good. This is expected behavior.

Now zero the rule counts on the firewall VM and send a similar message from the internal VM, but
this time spoof the source address. This requires adding an alias IP address to the interface on the
internal VM:

root@internal:~/bin # ifconfig em0 4.4.4.4/32 alias
root@internal:~/bin #
root@internal:~/bin # echo "hello 2 from internal VM" | ncat -u -s 4.4.4.4 10.10.10.50
5656
root@internal:~/bin #

Now, rule 1000 prevents the matching of the incoming packet with a spoofed source address and no
packet is received by the userv.sh service. Instead, the packet is handled by the default deny rule:

root@firewall:~/bin # sh userv.sh 5656
PORT1 = [5656]
Starting UDP listener on [10.10.10.50],[5656]
^Croot@firewall:~/bin #
root@firewall:~/bin #
root@firewall:~/bin # ipfw show
01000 0 0 allow udp from any to me verrevpath
65535 1 53 deny ip from any to any
root@firewall:~/bin #

The other keywords in this section, versrcreach and antispoof operate in a similar manner. Check
the man page for the slight differences between them.

7.7. jail

157

Jails are an important component of FreeBSD and have been a part of the base system since
FreeBSD 4. ipfw works in tandem with jails to provide networking security. As discussed in the
FreeBSD Handbook Section on Jails and Networking, there are three types of jail networking setups.
This section discusses the first two:

• Host Networking Setup

• Virtual Networking (VNET) Setup

7.7.1. Host-based Jail Networking

In this type of networking setup, the jail shares the host networking stack. The jail has the same IP
address and interface as the host.

Recall that the jail1 VM has different characteristics than the standard VMs used in this book. It has
8GB memory, a bigger disk, and is running ZFS for its filesystem.

Instructions for setting up this type of jail are found in the FreeBSD Handbook Section Creating a
Thin Jail Using OpenZFS Snapshots.

% cd ~/ipfw-primer/ipfw/HOST_SCRIPTS
% sudo /bin/sh mkbr.sh reset bridge0 tap12 host_interface
% /bin/sh runvm.sh jail1

Set up the jail1 VM to use DHCP addressing and follow the instructions in the handbook to create a
thinjail using ZFS, including creating /etc/jail.conf with the parameters shown in that section.

Once that is completed, reconfigure the FreeBSD host for this example.

Set up the external1 and jail1 VMs with these commands on the FreeBSD host:

% cd ~/ipfw-primer/ipfw/HOST_SCRIPTS
% sudo /bin/sh mkbr.sh reset bridge0 tap1 tap12
% /bin/sh runvm.sh external1 jail1

and use the addressing shown in the figure below.

158

https://docs.freebsd.org/en/books/handbook/jails/#jails-networking
https://docs.freebsd.org/en/books/handbook/jails/#creating-thin-jail-openzfs-snapshots
https://docs.freebsd.org/en/books/handbook/jails/#creating-thin-jail-openzfs-snapshots

Figure 40. Jail With Host Based Networking

The typical jail configuration file for this setup uses the following network configuration:

 jailname {
 . . .
 # Network
 ip4 = inherit;
 interface = em0;
 . . .
 }

Login to the jail1 VM and start the jail with:

service jail onestart thinjail

Access the jail with the jexec command:

jexec -u root thinjail

The jail named thinjail is now using the host /etc/jail.conf example, which uses the inherited IPv4
network stack, for the jail.


There are now three different command line environments - the FreeBSD host, the
QEMU jail1 VM, and the thinjail running inside the jail1 VM. Keep track of which

159

command line you are using by watching the shell prompt.

Here, it is the host that controls the network stack and all ipfw commands (loading, unloading,
adding/deleteing rules, etc.) must be done from the host. The jail root user does not have permission
to operate ipfw inside the jail.

Figure 41. Jail With Host Based Networking

All ipfw configuration for the jail must be done on the host. ipfw provides the jail keyword for this
purpose. For IP communications, this keyword applys primarily to outbound packets from the jail.
Inbound packets to the jail, follow the normal host rules.

By default, if the thinjail runs nc -l 203.0.113.75 5656, it opens up a TCP socket listening on port
5656 in the jail1 VM. If instead, the jail1 VM runs the identical command in the jail1 VM, the
listening socket is not visible to the thinjail.

The conditions for outside access to thinjail rely on the host network, and the jail jailname
keyword is not needed.

root@jail1:# kldload ipfw
ipfw2 (+ipv6) initialized, divert loadable, nat loadable, default to deny, logging
disabled
root@jail1:#
root@jail1:# ipfw add 100 check-state
root@jail1:# ipfw add 1000 allow tcp from any to me dst-port 5656 setup keep-state

This rule on the host system will allow a connection from the external1 VM to reach the above nc -l
203.0.113.75 5656 running inside thinjail.

For outbound TCP communication, rule 2000 below, using the jail thinjail keyword is required. For
the most part, the ipfw rules used elsewhere in this book are applicable here with the addition of
the jail jailname keyword.

ipfw add 100 check-state
ipfw add 1000 allow tcp from any to me dst-port 5656 setup keep-state
ipfw add 2000 allow tcp from me to any setup keep-state jail thinjail

160



Always provide the jail name rather than a numeric ID. If the jail is restarted for
any reason it may get a new jail ID number and an existing rule with a jail number
will be immediately out of date. The rule will have to be re-entered using the jail
name.



When entering a rule with a jail name, ipfw will lookup the name and reply with
the number. So even when listing or showing the ruleset, ipfw will always show
the number not the name. Use the jls command to show the jail ID name and
number.


It is a good idea to compartmentalize the rules for each jail in a file with the jail
name. That way, if a jail is restarted, the specific file can be rerun to update the
ipfw rules on the host.

7.7.2. Virtual Network (VNET) Jail Networking

A more advanced setup is using the VNET networking capabilities of FreeBSD for the jail. There are
many good online tutorials on setting up VNET jails. This section is focused on the use of ipfw with
a VNET network for the jail.

The architecture for this setup is shown in the figure below and is similar to that used in the last
section.

161

Figure 42. Jail With VNET Based Networking



While there are two bridge0 interfaces shown in the diagram, they are completely
unrelated. The top bridge0 resides on the FreeBSD host and connects the external1
and jail1 VMs. The bottom bridge0 resides inside the jail1 VM and connects the
jail1 em0 interface with the epair(4) interface attached to the vnetjail jail.

For this section, create a second thinjail named vnetjail as follows:

root@jail1:# zfs clone zroot/jails/templates/14.2-RELEASE@base
zroot/jails/containers/vnetjail

See below for configuring /etc/jail.conf.


Configuring multiple jails can be done with separate sections in /etc/jail.conf, or by
creating separate configuration files in /etc/jail.d/jailname.conf. See jail.conf(5) for
details.

The vnetjail configuration sets up a VNET network as follows:

#

162

https://man.freebsd.org/cgi/man.cgi?query=epair&sektion=4&format=html
https://man.freebsd.org/cgi/man.cgi?query=jail.conf&sektion=5&format=html

vnetjail.conf - handbook/jails - setting up a thin jail under ZFS
#
vnetjail {
 # Startup / Logging
 exec.start = "/bin/sh /etc/rc";
 exec.stop = "/bin/sh /etc/rc.shutdown";
 exec.consolelog = "/var/log/jail_console_${name}.log";

 # Permissions
 allow.raw_sockets;
 exec.clean;
 mount.devfs;
 devfs_ruleset = 5;

 # Hostname / Path
 host.hostname = "${name}";
 path = "/usr/local/jails/containers/${name}";

 # VNET / VIMAGE
 vnet;
 vnet.interface = "${epair}b";

 # Network
 $id = "90";
 $ip = "203.0.113.${id}/24";
 $gateway = "203.0.113.50";
 $bridge = "bridge0";
 $epair = "epair${id}";

 # ADD TO bridge INTERFACE
 exec.prestart = "/sbin/ifconfig ${bridge} create up";
 exec.prestart += "/sbin/ifconfig ${epair} create up";
 exec.prestart += "/sbin/ifconfig ${epair}a up descr jail:${name}";
 exec.prestart += "/sbin/ifconfig ${bridge} addm ${epair}a up";
 exec.prestart += "/sbin/ifconfig ${bridge} addm em0";
 exec.start += "/sbin/ifconfig ${epair}b ${ip} up";
 exec.start += "/sbin/route add default ${gateway}";
 exec.poststop = "/sbin/ifconfig ${bridge} deletem ${epair}a";
 exec.poststop += "/sbin/ifconfig ${bridge} deletem em0";
 exec.poststop += "/sbin/ifconfig ${epair}a destroy";
 exec.poststop += "/sbin/ifconfig ${bridge} destroy";
}

In this instance, the network stack is completely separate from the host network stack. However,
achieving and managing connectivity happens inside the vnetjail jail.

Testing connectivity with the jail can be accomplished by

1. Ensuring ipfw is not loaded on jail1,

2. Entering the vnetjail, and

163

3. Starting up a listening service using nc(1):

root@jail1:~ # kldunload ipfw
IP firewall unloaded
root@jail1:~ # service jail onestart vnetjail
root@jail1:~ #
root@jail1:~ # jexec -u root vnetjail
root@vnetjail:/ # cd
root@vnetjail:~ #
root@vnetjail:~ # nc -l -k 5656

Connecting from external1 using nc(1):

root@external1:~ # nc 203.0.113.90 5656
hello from external1
^C
#

With no ipfw firewall in place, the test is successful.

To apply ipfw rules for the vnetjail jail, start ipfw in the jail1 VM.


In VNET jails, ipfw is started from outside the jail, but rules are added from
inside the jail. ipfw is also stopped from outside the jail.

Then, from inside the vnetjail jail, start up a listener using nc(1):

root@vnetjail:~ # nc -l -k 5656
root@vnetjail:~ #

Since the vnetjail jail has a separate IP address and network stack from the jail1 VM, orient ipfw
rules around the vnetjail IP address:

root@jail1:~ # kldload ipfw
ipfw2 (+ipv6) initialized, divert loadable, nat loadable, default to deny, logging
disabled
root@jail1:~ #
root@jail1:~ # jexec -u root vnetjail
root@vnetjail:/ # cd
root@vnetjail:~ #
root@vnetjail:~ # ipfw show
65535 0 0 deny ip from any to any
root@vnetjail:~ #
root@vnetjail:~ # ipfw add 100 check-state
00100 check-state :default
root@vnetjail:~ #

164

https://man.freebsd.org/cgi/man.cgi?query=nc&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=nc&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=nc&sektion=1&format=html

root@vnetjail:~ # ipfw add 1000 allow tcp from any to me dst-port 5656 setup keep-
state
01000 allow tcp from any to me 5656 setup keep-state :default
root@vnetjail:~ #
root@vnetjail:~ # ipfw show
00100 0 0 check-state :default
01000 0 0 allow tcp from any to me 5656 setup keep-state :default
65535 0 0 deny ip from any to any

The single rule above is enough to set up a TCP connection.

From external1:

root@external1:~ # nc 203.0.113.90 5656
Hello from external1 after ipfw rules have been set up.
^C
root@external1:~ #

After the above:

root@vnetjail:~ #
root@vnetjail:~ # ipfw show
00100 0 0 check-state :default
01000 18 1012 allow tcp from any to me 5656 setup keep-state :default
65535 0 0 deny ip from any to any
root@vnetjail:~ #

Setting up rules in the vnetjail is left as an exercise to the reader.

165

Appendix A: Appendix A: QEMU Setup


It is highly advised to read through the entire installation procedure, including all
notes and tips, before proceeding.

This appendix contains helpful information for getting QEMU installed and running on FreeBSD,
and instructions for common use. The installation presumes a graphical desktop running on top of
X Windows or Wayland. Because of this, the user environment, either X Window or Wayland, must
allow for use of the DISPLAY variable in the local environment.

The examples in this book utilize virtual machines (VMs) using an SDL-based vt(4) console and also
include a using a FreeBSD serial console. Instructions for setting up the VMs are below. Instructions
for setting up and managing the serial consoles are found in Adding and Managing Serial Console
Access to the VMs below.

Additional resources for understanding and using QEMU include:

• The QEMU Virtualization chapter in the FreeBSD Handbook

• The qemu(1) manual page

• The QEMU Home Page

• Yet Another QEMU installation guide

Installation

QEMU is available as a package or a port. There are a large number of build options on the port, so
in most cases it is best to install the package. sudo(8) will also need to be installed as well.

Altogether, there are nine virtual machines used in this book. The following procedure will make
ready all nine VMs. However, all nine are not needed immediately. Most of the first half of this book
can be done with just the firewall, internal, external1, and external2 VMs.

Figure 43. Setting Up the Initial Virtual Machines

The initial setup is that shown in Figure 1.

166

https://man.freebsd.org/cgi/man.cgi?query=vt&sektion=4&format=html
https://docs.freebsd.org/en/books/handbook/virtualization/#qemu-virtualization-host-guest
https://man.freebsd.org/cgi/man.cgi?query=qemu&sektion=1&format=html
https://www.qemu.org
https://www.jimby.name/techbits/recent/qemu
https://man.freebsd.org/cgi/man.cgi?query=sudo&sektion=8&format=html

A.1. QEMU and VM Installation Process
Follow the steps below to install and configure the QEMU virtual machines needed for this book.
Various scripts are used to create virtual machines and set up bridge and tap devices. If desired,
examine all scripts before use.

1. On the FreeBSD host, install the necessary packages - qemu(1), sudo(8) (or doas(1)). Sudo,
(or doas) is necessary for running the virtual machines as these QEMU configurations open
a separate console window through SDL. The examples in this book use sudo.

pkg install qemu sudo

Configure sudo as desired.

2. Clone the scripts for this book from the ipfw-primer project on GitHub. Then fetch the
current FreeBSD ISO.

Note: The initial path can be any directory.
All scripts use relative directory addressing.
Adjust the paths below as necessary.

% cd $HOME
% git clone https://github.com/jimmyb-gh/ipfw-primer.git
% cd ~/ipfw-primer/ipfw/ISO
% fetch https://download.freebsd.org/releases/amd64/amd64/ISO-IMAGES/<latest
version>/FreeBSD-<latest-version>-RELEASE-amd64-dvd1.iso

The example for FreeBSD 14.2 would be:
% fetch https://download.freebsd.org/releases/amd64/amd64/ISO-
IMAGES/14.2/FreeBSD-14.2-RELEASE-amd64-dvd1.iso

% # Link a shorter name to the ISO image.
% ln -s FreeBSD-<latest-version>-RELEASE-amd64-dvd1.iso fbsd.iso

3. Using sudo, create the bridge and tap devices for the virtual machines to use. See the
description of the mkbr.sh script in Using mkbr.sh for Bridge and Tap Setup.

% cd ../HOST_SCRIPTS
% sudo /bin/sh mkbr.sh reset bridge0 tap0 tap1 tap2 tap3 tap5 tap6 tap7 tap9
tap12 hostintf <--- replace hostintf with host network interface (em0, bge0,
etc.)

167

https://man.freebsd.org/cgi/man.cgi?query=qemu&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=sudo&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=doas&sektion=1&format=html

4. As a normal user, create all VM image files. Each VM is 4GB except for the jail1 VM which
is 12GB.

% /bin/sh _CreateAllVMs.sh

The next command starts the installation for the firewall VM.
Once finished, return to this point and repeat for the following VMs:
external1, external2, external3, firewall2, internal, dnshost, v6only.

% sudo /bin/sh firewall.sh

Ignore the "NOTE!!! telnet server running..." message for now.
Instructions for setting up a serial console are found later in this setup
guide.

The FreeBSD installer should boot. Perform a standard installation of FreeBSD.

During the installation note the following:

◦ On all VMs except the jail1 VM, select to use UFS as the filesystem. ZFS does not
perform well with small memory sizes. The jail1 VM has more memory and ZFS will be
used to create jails on the jail1 VM. It is the only VM that requires ZFS.

◦ For these installations, use DHCP for networking. If desired, configure IPv6 if supported
by the local LAN.

◦ When adding the default user, ensure they are a member of the wheel group.

Once the installation completes, the virtual machine reboots into the newly installed
FreeBSD image.

5. Login as root, update the system, and reboot.

freebsd-update fetch install
reboot

6. On all virtual machines, install the packages listed below The nmap package brings in the
version of ncat(1) used by scripts on the firewall and external VMs. nginx, lynx, cmdwatch,
hping3, tsctp, and iperf3 will be used in later chapters.

pkg install nmap nginx lynx cmdwatch hping3 tsctp iperf3

7. Finally, download ~/ipfw-primer/ipfw/VM_SCRIPTS/IPFW_root_bin.tgz file to all VMs. This tar
file has a number of scripts needed for the virtual machines.

168

https://man.freebsd.org/cgi/man.cgi?query=ncat&sektion=1&format=html

Move the tarzip file into /root and extract the contents:

On each VM, login as root, copy and untar the following file:

scp user@hostip:~/ipfw-primer/ipfw/VM_SCRIPTS/IPFW_root_bin.tgz .
#
mv IPFW_root_bin.tgz /root
#
cd /root
#
tar xvzf IPFW_root_bin.tgz
... files are extracted into /root/bin
#
chmod +x /root/bin/*.sh

8. Repeat the installation procedure for each virtual machine.

Some additional configurations are required for examples later in the book:

On the firewall and firewall2 VMs:

• Add net.inet.ip.fowarding=1 and net.inet6.ip6.fowarding=1 to /etc/sysctl.conf.

On the external1 and internal VMs install these extra packages:

• pkg install git

• pkg install cmake

On each VM, navigate to /usr/local/www/nginx. Download the modified index.html file from the
host system to replace the original:

• scp user@host:~/ipfw-primer/ipfw/VM_SCRIPTS/VM_name/index.html .

On the firewall VM, download the bsdclat464.sh script

• cd /root/bin

• scp user@host:~/ipfw-primer/ipfw/VM_SCRIPTS/firewall/bsdclat464.sh .

On the *firewall2 VM, download the bsdplat464.sh script

• cd /root/bin

• scp user@host:~/ipfw-primer/ipfw/VM_SCRIPTS/firewall/bsdplat464.sh .

(End installation procedure.)

169

For this Quick Start, it is Ok to use DHCP for both VMs. In later examples there will be multiple
external VMs using the 203.0.113.0/24 network and other private networks, all set up the same way
and attached via tap(4) interfaces to one or more if_bridge(4) interfaces on the FreeBSD host.

To ensure the first two VMs are set up correctly, ping the firewall VM from the external1 VM and
vice-versa. Communications should be successful. If not, check the above installation details and
troubleshoot any network issues. It should be possible ping in both directions, and even ssh(1) from
one VM to the other.


For additional helpful information on getting QEMU set up correctly, check the
QEMU virtualization section in the FreeBSD Handbook.


If the mouse is clicked in the QEMU console window, QEMU will “grab” the mouse.
If this happens,type, Ctl + Alt + G to release the mouse.


If suddenly, the QEMU console window is full screen, you may have accidentally
typed Ctl + Alt + F . If this happens, retype Ctl + Alt + F to restore the desktop screen.

A.1.1. Disabling Syslog Messages to the Console in the Virtual Machines

It may be advantageous (even necessary) to stop syslog messages from being sent to the console
(either the QEMU console, or the serial port).

To configure syslog to stop logging to the console, configure a file to receive console messages:

touch /var/log/console.log
#
chmod 0600 /var/log/console.log

Then, as root, modify the line in /etc/syslog.conf to read (instead of /dev/console):

*.err;kern.warning;auth.notice;mail.crit /var/log/console.log

And, if necessary:

service syslogd restart

All messages previously bound for the console, will be directed to /var/log/console.log instead.

170

https://man.freebsd.org/cgi/man.cgi?query=tap&sektion=4&format=html
https://man.freebsd.org/cgi/man.cgi?query=if_bridge&sektion=4&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh&sektion=1&format=html
https://docs.freebsd.org/en/books/handbook/virtualization/#qemu-virtualization-host-guest

Before continuing, there is one more piece to add to each VM - a serial console. A serial console
permits examination of the state of each VM, independent of the main console.

A.1.2. Adding and Managing Serial Console Access to the VMs

Adding a serial console the FreeBSD VM

To add a serial console to each FreeBSD VM, start up the VM and edit the file /boot/loader.conf and
add the line console=“comconsole” to allow use of the serial console. Reboot the VM to begin using
the serial console. Note that FreeBSD diverts boot I/O to the serial console, so until the FreeBSD
operating system is completely ready, output to the QEMU window will be limited.

The startup scripts for each VM are already configured to use a serial console. A single
configuration line was added to the QEMU configuration to provide a serial console. The serial
console is actually accessed over a telnet(1) session. The QEMU manual page, qemu(1), describes
how the -serial keyword works in detail.

QEMU redirects the serial port I/O to a TCP port on the host system at VM startup, and allows a
telnet(1) connection on the configured port on the host. Once the FreeBSD system starts booting and
recognizes the console directive in /boot/loader.conf it redirects I/O to the serial console. QEMU
detects this and manages the necessary character I/O on that serial port to the TCP port on the host.

It is important to note that the this serial redirect over TCP takes place outside the virtual machine.
There is no interaction with any network on the virtual machine and thus it is not subject to any
firewall rules. Think of it just like a "dumb terminal" sitting on an RS-232 serial port on a real
machine.

Management of serial console windows on the FreeBSD host

Each QEMU VM generates a console window, and each serial device also needs its own window,
potentially doubling the number of windows used.

Possible solutions are:

• Separate windows for each QEMU VM (doubles the number of windows)

• Use tabbed windows (available on XFCE and some other desktops)

• Use a terminal multiplexer such as tmux(1) or screen(1)

The selected solution uses the multiplexer approach with the tmux(1) program for window
management. Appendix D provides details on using both tmux(1) and screen(1). The following
figures and descriptions use tmux(1).

Install tmux on the FreeBSD host with:

pkg install tmux

and if necessary, copy the file swim.sh (or scim.sh for using screen(1)) from Appendix B into the
HOST_SCRIPTS directory. If using scim.sh, follow the instructions in the script to set up a .screenrc

171

https://man.freebsd.org/cgi/man.cgi?query=telnet&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=qemu&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=telnet&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=tmux&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=screen&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=tmux&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=tmux&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=screen&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=tmux&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=screen&sektion=1&format=html

file.

The figure below shows the use of the swim.sh tmux session manager. Run sh swim.sh in the
HOST_SCRIPTS directory to start up the session manager.

Figure 44. Starting Up tmux(1) Session Manager

The figure shows five named windows in one session (session [0]) with the tmux status line in
green at the bottom:

• 0:bash - a terminal window of the user running swim.sh

• 1:firewall - a terminal window to access the firewall VM

• 2:external1 - a terminal window to access the external1 VM

• 3:external2 - a terminal window to access the external2 VM

• 4:external3 - a terminal window to access the external3 VM

The current window is marked with the '*' character on the status bar.

Simplified tmux(1) Usage

tmux uses Ctl + b as its control key. To move from window to window use Ctl + b n to move to the
next window or Ctl + b p to move to the previous window. Use Ctl + b ? for a list of all key bindings.

Type tmux kill-server in any host session shell window (not a VM window) to completely leave
tmux.

Consult the tmux manual page tmux(1) for more usage details.

Accessing the QEMU Serial Consoles

172

https://man.freebsd.org/cgi/man.cgi?query=tmux&sektion=1&format=html

To access the VM serial consoles, move to the indicated window and telnet to the port on the local
host for that VM:

Move to the external1 window in tmux, then

% telnet localhost 4410
Trying ::1...
Connected to localhost.
Escape character is '^]'.

FreeBSD/amd64 (external1) (ttyu0)

login:



To exit out of the telnet session, press Ctl +] then press q like this:

 login: (type Ctl+])
 telnet> q
 Connection closed.
 %

There should now be two QEMU VMs (firewall and external1) started, with serial console sessions
available through the tmux sessions as shown below.

Configure the FreeBSD host, firewall VM, and external1 VM with DHCP addressing as shown in
the figure at the beginning of this Quick Start session. There should be full connectivity between the
FreeBSD host, the firewall VM and the external1 VM.

173

Figure 45. External1 and Firewall VMs Startup with Serial Console

Using ipfw to control traffic between these two QEMU VMs is discussed in the next chapter.

A.2. Using mkbr.sh for Bridge and Tap Setup
Included in Appendix B, the mkbr.sh script is used to set up if_bridge(4) and tap(4) devices on the
FreeBSD host. These interfaces are required to allow the virtual machines to communicate with
each other and, when suitably configured, to communicate with the outside world.

Many examples in this book include a statement such as:

/bin/sh mkbr.sh reset bridge0 tap0 tap1 em0

or something similar.

The above invocation resets the kernel modules necessary for bridge and tap operation, then it
creates one bridge, bridge0, and connects tap0, tap1, and em0. Here, "em0" refers to a host ethernet
interface, but it can be any ethernet interface on the local machine.

The script can be used to create any number of bridges and taps for complex network designs. For
example, the following invocation creates three bridges - bridge0 with tap0 and tap1 connected,

174

https://man.freebsd.org/cgi/man.cgi?query=if_bridge&sektion=4&format=html
https://man.freebsd.org/cgi/man.cgi?query=tap&sektion=4&format=html

bridge1 with tap2, tap3, and tap4 connected, and bridge2 with tap5 and host interface igb0
connnected.

% sudo /bin/sh mkbr.sh reset bridge0 tap0 tap1 bridge1 tap2 tap3 tap4 bridge2 tap5
igb0

To add other taps to existing bridges, do not specify the "reset" parameter:

/bin/sh mkbr.sh bridge0 tap10 tap11 bridge1 tap12 tap13 ... etc.

To delete all bridge and tap devices:

/bin/sh mkbr.sh reset

Usually, the examples include an architecture diagram, like that shown earlier, and an invocation
of mkbr.sh that will create the architecture shown.

Below is a handy chart to show the relationship of virtual machines and tap devices. Note that
some virtual machines have more than one interface. The chart also shows how all virtual
machines could be attached to the same bridge if needed for administrative purposes.

TAPLIST.TXT

This file contains just the taps that are needed to
connect all VMs to one bridge for admin purposes:

 +--+
 | |
 | bridge0 |
 | |
 +-+----+----+----+---+----+---+----+----+----+-+
 / / / / | | \ \ \ \
 tap0 tap1 tap2 tap3 tap5 tap6 tap7 tap9 tap12 host_interface
 | | | | | | | | |
 | | | | | | | | +- jail1:em0
 | | | | | | | +- firewall2:em0
 | | | | | | +- dnshost:em0
 | | | | | +- v6only:em0
 | | | | +- internal:em0
 | | | +- external3:em0
 | | +- external2:em0
 | +- external1:em0
 +- firewall:em0

The remaining taps are located on the VM listed:

175

tap4 - firewall:em1
tap8 - dnshost:em1
tap10 - firewall2:em1
tap11 - dnshost:em2

176

Appendix B: Appendix B: Scripts and Code
for QEMU Lab
The listing below shows how the scripts are organized on the GitHub ipfw-primer/SCRIPTS site.

.
|-- VM_SCRIPTS
| |-- IPFW_root_bin.tgz : common scripts for all VMs (see bin
list)
| |-- Manifest_IPFW_root_bin.txt : Manifest document for IPFW_root_bin.tgz
| |-- Manifest_index.txt : Manifest document for index.html files
|-- bin
| |-- tcon.sh : TCP connection script
| |-- tconr.sh : TCP connect with random port script
| |-- tcont.sh : TCP continuous connection script
| |-- tserv.sh : TCP server script for one port
| |-- tserv3.sh : TCP server script for three ports
| |-- ucon.sh : UDP connection script
| |-- uconr.sh : UDP connect with random port script
| |-- ucont.sh : UDP continuous connection script
| |-- userv.sh : UDP server script for one port
| |-- userv3.sh : UDP server script for three ports
| `-- userv5.sh : UDP server script for five ports
| |-- dnshost :
| | |-- Manifest_namedb.txt : Manifest for dnshost
/usr/local/etc/namedb
| | |-- dnshost_usrlocaletc_namedb.tgz : Files for the above
| | `-- index.html : Nginx index.html file for dnshost VM
| |-- external1 :
| | `-- index.html : Nginx index.html file for external1 VM
| |-- external2 :
| | `-- index.html : Nginx index.html file for external2 VM
| |-- external3 :
| | `-- index.html : Nginx index.html file for external3 VM
| |-- firewall :
| | |-- bsdclat464.sh : Script for Section 6.2 XLAT464 CLAT
| | `-- index.html : Nginx index.html file for firewall VM
| |-- firewall2 :
| | |-- bsdplat464.sh : Script for Section 6.2 XLAT464 CLAT
| | `-- index.html : Nginx index.html file for firewall2 VM
| |-- internal :
| | `-- index.html : Nginx index.html file for internal VM
| |-- v6only :
| | `-- index.html : Nginx index.html file for v6only VM
| `-- jail1 :
| `-- index.html : Nginx index.html file for jail1 VM
|-- _CreateAllVMs.sh : Script to create all VMs used in book
|-- dnshost.sh : QEMU startup script for dnshost VM
|-- external1.sh : QEMU startup script for external1 VM

177

https://github.com/jimmyb-gh/ipfw-primer/tree/main/ipfw/SCRIPTS

|-- external2.sh : QEMU startup script for external2 VM
|-- external3.sh : QEMU startup script for external3 VM
|-- firewall.sh : QEMU startup script for firewall VM
|-- firewall2.sh : QEMU startup script for firewall2 VM
|-- internal.sh : QEMU startup script for internal VM
|-- jail1.sh : QEMU startup script for jail1 VM
|-- mkbr.sh : Script to make host bridge and tap
devices
|-- runvm.sh : XFCE4 script to start VMs
|-- swim.sh : Script to manage serial terminals on
host
|-- scim.sh : Script to manage serial terminals on
host
|-- v6only.sh : QEMU startup script for v6only VM
|-- vm_envs.sh : IPFW lab environment variables
`-- CODE
 `-- divert.c : C code for working with divert keyword

All scripts are shown below in lexicographic order:

SCRIPT: VM_SCRIPTS/firewall/bsdclat464.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
FreeBSD 464XLAT CLAT script for firewall VM.
#
bsdclat464.sh: FreeBSD IPFW script for 464XLAT CLAT. See Section 6.2
Usage: # /bin/sh bsdclat464.sh (run script as root)

set -x

kldunload ipfw_nat64
kldunload ipfw
sleep 1
kldload ipfw
kldload ipfw_nat64

Create the nat64clat instance
ipfw nat64clat CLAT create clat_prefix 2001:db8:aaaa::/96 plat_prefix
2001:db8:bbbb::/96 allow_private log

Allow neighbor discovery
ipfw add 100 allow log icmp6 from any to any icmp6types 135,136

178

pass any ip through the nat64clat instance
ipfw add 150 nat64clat CLAT log ip from any to any

pass any ip through the nat64plat instance
ipfw add 200 nat64clat CLAT log ip from any to 2001:db8:bbbb::/96

allow ipv6 from any to any
ipfw add 300 allow log ip6 from any to any

allow ipv4 from any to any
ipfw add 400 allow log ip from any to any

0=log with ipfwlog0, 1=log with syslog
sysctl net.inet.ip.fw.verbose=0

sysctl net.inet.ip.fw.nat64_debug=1

direct output: 1 enable, 0 disable (packet goes back into ruleset)
sysctl net.inet.ip.fw.nat64_direct_output=1

indexterm:[bsdclat464.sh]

==

SCRIPT: VM_SCRIPTS/firewall2/bsdplat464.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
FreeBSD 464XLAT PLAT script for firewall2 VM.
#
bsdplat464.sh: FreeBSD IPFW script for 464XLAT CLAT. See Section 6.2
Usage: # /bin/sh bsdplat464.sh (run script as root)

set -x

kldunload ipfw_nat64
kldunload ipfw

sleep 1

kldload ipfw
kldload ipfw_nat64

create the nat64 stateful instance
ipfw nat64lsn NAT64 create log prefix4 203.0.112.0/24 prefix6 2001:db8:bbbb::/96
allow_private

179

Allow neighbor discovery
ipfw add allow log icmp6 from any to any icmp6types 135,136

Allow the nat64 outbound
ipfw add nat64lsn NAT64 log ip from 2001:db8:12::/64 to 2001:db8:bbbb::/96 in

ipfw add nat64lsn NAT64 log ip from any to 2001:db8:bbbb::/96 in

Allow the nat64 inbound
ipfw add nat64lsn NAT64 log ip from any to 203.0.112.0/24 in

Allow ipv4 from any to any
ipfw add allow log ip from any to any

Allow ipv6 from any to any
ipfw add allow log ip6 from any to any

Logging: 0 interfaces, 1 syslog
sysctl net.inet.ip.fw.verbose=0

Debug nat64
sysctl net.inet.ip.fw.nat64_debug=1

Direct output: 1 enable, 0 disable (packet goes back into ruleset)
sysctl net.inet.ip.fw.nat64_direct_output=1

indexterm:[bsdplat464.sh]

==

SCRIPT: _CreateAllVMs.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
_CreateAllVM.sh : Create VMs for the IPFW Primer lab.
Files are created in ../VM/
#

echo "Running _CreateAllVMs.sh"

echo
echo "This script will create 8 virtual machines in ../VM/"
echo
read -p "DO YOU REALLY WANT TO CREATE NEW QEMU IMAGES OVERWRITING ANY EXISTING IMAGES?
Answer YES to continue. " junk

180

echo [${junk}]

if ["X${junk}" != "XYES"]
then
 echo "Response was [${junk}]"
 echo "bailing out..."
 exit 1
fi

echo "Response was [${junk}]"
echo "Ok, continuing..."

#exit

for i in dnshost external1 external2 external3 firewall firewall2 internal v6only
do
 echo "Creating ${i} VM"
 echo qemu-img create -f qcow2 -o preallocation=full ../VM/${i}.qcow2 4G
 qemu-img create -f qcow2 -o preallocation=full ../VM/${i}.qcow2 4G
done

echo
echo "Done."

==

SCRIPT: tcon.sh

#!/bin/sh
#
location: external Vms
#
sh tcon.sh PORTNUM - start up 1 connection over TCP
#

usage() {
 echo "sh tcon.sh PORTNUM"
 exit 1
}

#echo $#

if [$# -ne 1]
then
 usage
else

181

 export PORT1=$1
fi

echo "PORT1 = [$PORT1]"

export CONN="203.0.113.50"
export COUNT=1

export MYIP=ifconfig em0 | grep inet | grep -v inet6 | awk '{print $2}'
export MYNAME="external1"

echo "TCP connection from [$MYIP],[$PORT1],[$COUNT]"
echo "TCP connection from [$MYIP],[$PORT1],[$COUNT]"| ncat $CONN $PORT1

export PREVIOUS_PORT=$PORT1

while :
do

 COUNT=expr $COUNT + 1

 read -p "ncat [$COUNT] ready. Enter a valid PORTNUM: " PORT1

 if ["X$PORT1" = "X"]
 then
 PORT1=$PREVIOUS_PORT
 fi

 echo "TCP connection from [$MYIP],[$PORT1],[$COUNT]"
 echo "TCP connection from [$MYIP],[$PORT1],[$COUNT]"| ncat $CONN $PORT1

 if [$? -ne 0]
 then
 echo "TCP connection [$MYIP],[$PORT1],[$COUNT] FAILED"
 fi

 PREVIOUS_PORT=$PORT1

done

==

SCRIPT: tconr.sh

#!/bin/sh
#
location: external Vms
#
sh tconr.sh PORTNUM SLEEPVAL (randomized port numbers) - start up 1 connection over

182

TCP
#

usage() {
 echo "sh tconr.sh PORT1NUM SLEEPVAL (randomized port numbers)"
 exit 1
}

echo $#

if [$# -ne 2]
 then
 usage
fi

PORT1=$1
SLEEPVAL=$2

echo "PORT1 = [$PORT1]"
echo "SLEEPVAL = [$SLEEPVAL]"

export CONN="203.0.113.50"
export COUNT=1
export MYIP=ifconfig em0 | grep inet | grep -v inet6 | awk '{print $2}'
export MYNAME="external1"

echo "TCP connection from [$MYIP],[$PORT1],[$COUNT]"
echo "TCP connection from [$MYIP],[$PORT1],[$COUNT]"| ncat $CONN $PORT1

while :
do

COUNT=expr $COUNT + 1

use jot(1) to get a random port between 5656 and 5659.
Connection to 5659 has no listener on firewall and will thus fail.

 PORT1=jot -r 1 5656 5659 $RANDOM

 echo "TCP connection from [$MYIP],[$PORT1],[$COUNT]"
 echo "TCP connection from [$MYIP],[$PORT1],[$COUNT]"| ncat $CONN $PORT1

 if [$? -ne 0]
 then
 echo "TCP connection [$MYIP],[$PORT1],[$COUNT] FAILED"
 fi

 sleep $SLEEPVAL

done

183

==

SCRIPT: tcont.sh

#!/bin/sh
#
location: external Vms
#
sh tcont.sh PORT1NUM SLEEPVAL - keep hammering same TCP port every SLEEPVAL
#

usage() {
 echo "sh tcont.sh PORT1NUM SLEEPVAL"
 exit 1
}

#echo $#

if [$# -ne 2]
 then
 usage
fi

export PORT1=$1
export SLEEPVAL=$2

echo "PORT1 = [$PORT1]"
echo "SLEEPVAL = [$SLEEPVAL]"

export CONN="203.0.113.50"
export COUNT=1
export MYIP=ifconfig em0 | grep inet | grep -v inet6 | awk '{print $2}'

echo "TCP connection from [$MYIP],[$PORT1],[$COUNT]"
echo "TCP connection from [$MYIP],[$PORT1],[$COUNT]"| ncat $CONN $PORT1

while :
do

 COUNT=expr $COUNT + 1

 echo "TCP connection from [$MYIP],[$PORT1],[$COUNT]"
 echo "TCP connection from [$MYIP],[$PORT1],[$COUNT]"| ncat $CONN $PORT1

 if [$? -ne 0]
 then

184

 echo "TCP connection [$MYIP],[$PORT1],[$COUNT] FAILED"
 fi

 sleep $SLEEPVAL

done

==

SCRIPT: tserv.sh

#!/bin/sh
#
location: firewall VMs
#
tserv.sh - start up 1 listener over TCP

zapall() {
kill -TERM $PID1
}

trap zapall SIGINT

export MYIP=ifconfig em0 | grep inet | grep -v inet6 | awk '{print $2}'

export PORT1=5656

echo "Starting TCP listener on [$PORT1]"

ncat -l -4 -k $MYIP $PORT1 &
PID1=$!

wait

exit

==

SCRIPT: tserv3.sh

#!/bin/sh
#
location: firewall VMs
#
tserv3.sh - start up 3 listeners over TCP

185

zapall() {
kill -TERM $PID1 $PID2 $PID3
}

trap zapall SIGINT

export MYIP=ifconfig em0 | grep inet | grep -v inet6 | awk '{print $2}'

export PORT1=5656
export PORT2=5657
export PORT3=5658

echo "Starting TCP listeners on [$PORT1],[$PORT2],[$PORT3]"

ncat -l -4 -k $MYIP $PORT1 &
PID1=$!

ncat -l -4 -k $MYIP $PORT2 &
PID2=$!

ncat -l -4 -k $MYIP $PORT3 &
PID3=$!

wait

exit

==

SCRIPT: ucon.sh

#!/bin/sh
#
location: external Vms
#
sh ucon.sh PORTNUM - start up 1 transfer over UDP
#

usage() {
 echo "sh ucon.sh PORTNUM"
 exit 1
}

#echo $#

if [$# -ne 1]
then
 usage

186

else
 export PORT1=$1
fi

echo "PORT1 = [$PORT1]"

export CONN="203.0.113.50"
export CONN="10.10.10.50"
export COUNT=1

export MYIP=ifconfig em0 | grep inet | grep -v inet6 | awk '{print $2}'
export MYNAME="external1"

echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"
echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"| ncat -u $CONN $PORT1

export PREVIOUS_PORT=$PORT1

while :
do

 COUNT=expr $COUNT + 1

 read -p "ncat [$COUNT] ready. Enter a valid PORTNUM: " PORT1

 if ["X$PORT1" = "X"]
 then
 PORT1=$PREVIOUS_PORT
 fi

 echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"
 echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"| ncat -u $CONN $PORT1

 if [$? -ne 0]
 then
 echo "UDP packet [$MYIP],[$PORT1],[$COUNT] FAILED"
 fi

 PREVIOUS_PORT=$PORT1

done

==

SCRIPT: uconr.sh

#!/bin/sh
#
location: external Vms

187

#

usage() {
 echo "sh uconr.sh PORT1NUM SLEEPVAL (randomized port numbers)"
 exit 1
}

echo $#

if [$# -ne 2]
 then
 usage
fi

PORT1=$1
SLEEPVAL=$2

echo "PORT1 = [$PORT1]"
echo "SLEEPVAL = [$SLEEPVAL]"

export CONN="203.0.113.50"
export COUNT=1
export MYIP=ifconfig em0 | grep inet | grep -v inet6 | awk '{print $2}'
export MYNAME="external1"

echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"
echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"| ncat -u $CONN $PORT1

while :
do

COUNT=expr $COUNT + 1

use jot(1) to get a random port between 5656 and 5659.
Packet on 5659 has no listener on firewall and will thus fail.

 PORT1=jot -r 1 5656 5659 $RANDOM

 echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"
 echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"| ncat -u $CONN $PORT1

 if [$? -ne 0]
 then
 echo "UDP packet [$MYIP],[$PORT1],[$COUNT] FAILED"
 fi

188

 sleep $SLEEPVAL

done

==

SCRIPT: ucont.sh

#!/bin/sh
#
location: external Vms
#
sh ucont.sh PORT1NUM SLEEPVAL - keep hammering same UDP port every SLEEPVAL
#

usage() {
 echo "sh ucont.sh PORT1NUM SLEEPVAL"
 exit 1
}

#echo $#

if [$# -ne 2]
 then
 usage
fi

export PORT1=$1
export SLEEPVAL=$2

echo "PORT1 = [$PORT1]"
echo "SLEEPVAL = [$SLEEPVAL]"

export CONN="10.10.10.50"
export CONN="203.0.113.50"
export COUNT=1
export MYIP=ifconfig em0 | grep inet | grep -v inet6 | awk '{print $2}'

echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"
echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"| ncat -u $CONN $PORT1

while :
do

 COUNT=expr $COUNT + 1

echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"
echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"| ncat -u $CONN $PORT1

189

 echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"
 echo "UDP packet from [$MYIP],[$PORT1],[$COUNT]"| ncat -u $CONN $PORT1

 if [$? -ne 0]
 then
 echo "UDP packet [$MYIP],[$PORT1],[$COUNT] FAILED"
 fi

 sleep $SLEEPVAL

done

==

SCRIPT: userv.sh

#!/bin/sh
#
location: firewall VMs
#
userv.sh PORTNUM - start up 1 listener over UDP
#

usage() {
 echo "sh userv.sh PORTNUM"
 exit 1
}

#echo $#

if [$# -ne 1]
then
 usage
else
 PORT1=$1
fi

echo "PORT1 = [$PORT1]"

zapall() {
kill -TERM $PID1
}

trap zapall SIGINT

export MYIP=ifconfig em0 | grep inet | grep -v inet6 | awk '{print $2}'

190

echo "Starting UDP listener on [$MYIP],[$PORT1]"

echo nc -l -k -u $MYIP $PORT1
nc -l -k -u $MYIP $PORT1 &
PID1=$!

wait

exit

==

SCRIPT: userv3.sh

#!/bin/sh
#
location: firewall VMs
#
userv3.sh - start up 3 listeners over udp

zapall() {
kill -TERM $PID1 $PID2 $PID3
}

trap zapall SIGINT

export MYIP=ifconfig em0 | grep inet | grep -v inet6 | awk '{print $2}'

export PORT1=5656
export PORT2=5657
export PORT3=5658

echo "Starting UDP listeners on [$PORT1],[$PORT2],[$PORT3]"

nc -l -k -u $MYIP $PORT1 &
PID1=$!

nc -l -k -u $MYIP $PORT2 &
PID2=$!

nc -l -k -u $MYIP $PORT3 &
PID3=$!

wait

exit

191

==

SCRIPT: userv5.sh

#!/bin/sh
#
location: firewall VMs
#
userv5.sh - start up 5 listeners over udp

zapall() {
kill -TERM $PID1 $PID2 $PID3 $PID4 $PID5
}

trap zapall SIGINT

export MYIP=ifconfig em0 | grep inet | grep -v inet6 | awk '{print $2}'
export PORT1=5656
export PORT2=5657
export PORT3=5658
export PORT4=5659
export PORT5=5660

echo "Starting UDP listeners on [$PORT1],[$PORT2],[$PORT3],[$PORT4],[$PORT5]"

nc -l -k -u $MYIP $PORT1 &
PID1=$!

nc -l -k -u $MYIP $PORT2 &
PID2=$!

nc -l -k -u $MYIP $PORT3 &cd
PID3=$!

nc -l -k -u $MYIP $PORT4 &
PID4=$!

nc -l -k -u $MYIP $PORT5 &
PID5=$!

wait

exit

==

192

SCRIPT: dnshost.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
FreeBSD QEMU VM startup script for dnshost VM.
#
dnshost.sh: FreeBSD QEMU VM startup script for dnshost VM.
Usage: sudo /bin/sh dnshost.sh
Note: Set up for serial console. Start another session and telnet to the port shown.
#
#set -x

pick up environment for this run
. ./vm_envs.sh

echo [ISO=${_DNSHOST_ISO}]
echo [mem=${_DNSHOST_mem}]
echo [hdsize=${_DNSHOST_hdsize}]
echo [img=${_DNSHOST_img}]
echo [mac1=${_DNSHOST_mac1}]
echo [mac2=${_DNSHOST_mac2}]
echo [name=${_DNSHOST_name}]
echo [tap7=${_DNSHOST_tap7}]
echo [tap8=${_DNSHOST_tap8}]
echo [tap11=${_DNSHOST_tap11}]
echo [telnetport=${_DNSHOST_telnetport}]

#exit

Note - the dnshost has two interfaces - em0 and em1.
em0 is considered the ipv4 interface and
em1 is considered the ipv6 interface.

echo
echo "NOTE!!! telnet server running! To start QEMU telnet to localhost
$_DNSHOST_telnetport"
echo

/usr/local/bin/qemu-system-x86_64 -monitor none \
 -serial telnet:localhost:${_DNSHOST_telnetport},server=on,wait=off \
 -cpu qemu64 \
 -vga cirrus \
 -m ${_DNSHOST_mem} \
 -cdrom ${_DNSHOST_ISO} \
 -boot order=cd,menu=on,splash=${_DNS_splash},splash-time=3000 \

193

 -drive if=none,id=drive0,cache=none,aio=threads,format=raw,file=${_DNSHOST_img} \
 -device virtio-blk,drive=drive0 \
 -netdev tap,id=nd0,ifname=${_DNSHOST_tap7},script=no,downscript=no \
 -device e1000,netdev=nd0,mac=${_DNSHOST_mac1} \
 -netdev tap,id=nd1,ifname=${_DNSHOST_tap8},script=no,downscript=no \
 -device e1000,netdev=nd1,mac=${_DNSHOST_mac2} \
 -netdev tap,id=nd2,ifname=${_DNSHOST_tap11},script=no,downscript=no \
 -device e1000,netdev=nd2,mac=${_DNSHOST_mac3} \
 -name \"${_DNSHOST_name}\" &

==

SCRIPT: external1.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
FreeBSD QEMU VM startup script for external1 VM.
#
external1.sh: FreeBSD QEMU VM startup script for external1 VM.
Usage: sudo /bin/sh external1.sh
Note: Set up for serial console. Start another session and telnet to the port shown.
#
FreeBSD QEMU VM startup script
#
external1.sh
#
#set -x

pick up environment for this run
. ./vm_envs.sh

echo [$_EXTERNAL1_ISO]
echo [$_EXTERNAL1_mem]
echo [$_EXTERNAL1_hdsize]
echo [$_EXTERNAL1_img]
echo [$_EXTERNAL1_mac]
echo [$_EXTERNAL1_name]
echo [$_EXTERNAL1_tap1]
echo [$_EXTERNAL1_telnetport]

#
#exit
#

echo

194

echo "NOTE!!! telnet server running! To start QEMU telnet to localhost
$_EXTERNAL1_telnetport"
echo

/usr/local/bin/qemu-system-x86_64 -monitor none \
 -serial telnet:localhost:${_EXTERNAL1_telnetport},server=on,wait=off \
 -cpu qemu64 \
 -vga cirrus \
 -m ${_EXTERNAL1_mem} \
 -cdrom ${_EXTERNAL1_ISO} \
 -boot order=cd,menu=on,splash=${_EX1_splash},splash-time=3000 \
 -drive if=none,id=drive0,cache=none,aio=threads,format=raw,file=${_EXTERNAL1_img} \
 -device virtio-blk,drive=drive0 \
 -netdev tap,id=nd0,ifname=${_EXTERNAL1_tap1},script=no,downscript=no \
 -device e1000,netdev=nd0,mac=${_EXTERNAL1_mac} \
 -name \"${_EXTERNAL1_name}\" &

==

SCRIPT: external2.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
FreeBSD QEMU VM startup script for external2 VM.
#
external2.sh: FreeBSD QEMU VM startup script for external2 VM.
Usage: sudo /bin/sh external2.sh
Note: Set up for serial console. Start another session and telnet to the port shown.
#

FreeBSD qemu vm startup script
#
external2.sh
#
#set -x

pick up environment for this run
. ./vm_envs.sh

echo [ISO=${_EXTERNAL2_ISO}]
echo [mem=${_EXTERNAL2_mem}]
echo [hdsize=${_EXTERNAL2_hdsize}]
echo [img=${_EXTERNAL2_img}]
echo [mac=${_EXTERNAL2_mac}]
echo [name=${_EXTERNAL2_name}]

195

echo [tap2=${_EXTERNAL2_tap2}]
echo [telnetport=${_EXTERNAL2_telnetport}]

#
#exit
#

echo
echo "NOTE!!! telnet server running! To start QEMU telnet to localhost
$_EXTERNAL2_telnetport"
echo

/usr/local/bin/qemu-system-x86_64 -monitor none \
 -serial telnet:localhost:${_EXTERNAL2_telnetport},server=on,wait=off \
 -cpu qemu64 \
 -vga cirrus \
 -m ${_EXTERNAL2_mem} \
 -cdrom ${_EXTERNAL2_ISO} \
 -boot order=cd,menu=on,splash=${_EX2_splash},splash-time=3000 \
 -drive if=none,id=drive0,cache=none,aio=threads,format=raw,file=${_EXTERNAL2_img} \
 -device virtio-blk,drive=drive0 \
 -netdev tap,id=nd0,ifname=${_EXTERNAL2_tap2},script=no,downscript=no \
 -device e1000,netdev=nd0,mac=${_EXTERNAL2_mac} \
 -name \"${_EXTERNAL2_name}\" &

==

SCRIPT: external3.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
FreeBSD QEMU VM startup script for external3 VM.
#
external3.sh: FreeBSD QEMU VM startup script for external3 VM.
Usage: sudo /bin/sh external3.sh
Note: Set up for serial console. Start another session and telnet to the port shown.
#
FreeBSD QEMU VM startup script
#
external3.sh
#
#set -x

pick up environment for this run
. ./vm_envs.sh

196

echo [ISO=${_EXTERNAL3_ISO}]
echo [mem=${_EXTERNAL3_mem}]
echo [hdsize=${_EXTERNAL3_hdsize}]
echo [img=${_EXTERNAL3_img}]
echo [mac=${_EXTERNAL3_mac}]
echo [name=${_EXTERNAL3_name}]
echo [tap3=${_EXTERNAL3_tap3}]
echo [telnetport=${_EXTERNAL3_telnetport}]

#
#exit
#

echo
echo "NOTE!!! telnet server running! To start QEMU telnet to localhost
$_EXTERNAL3_telnetport"
echo

/usr/local/bin/qemu-system-x86_64 -monitor none \
 -serial telnet:localhost:${_EXTERNAL3_telnetport},server=on,wait=off \
 -cpu qemu64 \
 -vga cirrus \
 -m ${_EXTERNAL3_mem} \
 -cdrom ${_EXTERNAL3_ISO} \
 -boot order=cd,menu=on,splash=${_EX3_splash},splash-time=3000 \
 -drive if=none,id=drive0,cache=none,aio=threads,format=raw,file=${_EXTERNAL3_img} \
 -device virtio-blk,drive=drive0 \
 -netdev tap,id=nd0,ifname=${_EXTERNAL3_tap3},script=no,downscript=no \
 -device e1000,netdev=nd0,mac=${_EXTERNAL3_mac} \
 -name \"${_EXTERNAL3_name}\" &

==

SCRIPT: firewall.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
FreeBSD QEMU VM startup script for firewall VM.
#
firewall.sh: FreeBSD QEMU VM startup script for firewall VM.

197

Usage: sudo /bin/sh firewall.sh
Note: Set up for serial console. Start another session and telnet to the port shown.
#
FreeBSD QEMU VM startup script
#
firewall.sh
#
#set -x

pick up environment for this run
. ./vm_envs.sh

echo [$_FIREWALL_ISO]
echo [$_FIREWALL_mem]
echo [$_FIREWALL_hdsize]
echo [$_FIREWALL_img]
echo [$_FIREWALL_mac1]
echo [$_FIREWALL_mac2]
echo [$_FIREWALL_name]
echo [$_FIREWALL_tap0]
echo [$_FIREWALL_tap4]
echo [$_FIREWALL_telnetport]

#exit

Note - the firewall has two interfaces - em0 and em1.
em0 is considered the 'external' interface and
em1 is considered the 'internal' interface.

echo
echo "NOTE!!! telnet server running! To start QEMU telnet to localhost
$_FIREWALL_telnetport"
echo

/usr/local/bin/qemu-system-x86_64 -monitor none \
 -serial telnet:localhost:${_FIREWALL_telnetport},server=on,wait=off \
 -cpu qemu64 \
 -display gtk \
 -vga cirrus \
 -m ${_FIREWALL_mem} \
 -cdrom ${_FIREWALL_ISO} \
 -boot order=cd,menu=on,splash=${_FW_splash},splash-time=3000 \
 -drive if=none,id=drive0,cache=none,aio=threads,format=raw,file=${_FIREWALL_img} \
 -device virtio-blk,drive=drive0 \
 -netdev tap,id=nd0,ifname=${_FIREWALL_tap0},script=no,downscript=no \
 -device e1000,netdev=nd0,mac=${_FIREWALL_mac1} \
 -netdev tap,id=nd1,ifname=${_FIREWALL_tap4},script=no,downscript=no \
 -device e1000,netdev=nd1,mac=${_FIREWALL_mac2} \
 -name \"${_FIREWALL_name}\" &

198

==

SCRIPT: firewall2.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
FreeBSD QEMU VM startup script for firewall2 VM.
#
firewall2.sh: FreeBSD QEMU VM startup script for firewall2 VM.
Usage: sudo /bin/sh firewall2.sh
Note: Set up for serial console. Start another session and telnet to the port shown.
#
FreeBSD QEMU VM startup script
#
firewall2.sh
#
#set -x

pick up environment for this run
. ./vm_envs.sh

echo [ISO=${_FIREWALL2_ISO}]
echo [mem=${_FIREWALL2_mem}]
echo [hdsize=${_FIREWALL2_hdsize}]
echo [img=${_FIREWALL2_img}]
echo [mac1=${_FIREWALL2_mac1}]
echo [mac2=${_FIREWALL2_mac2}]
echo [name=${_FIREWALL2_name}]
echo [tap9=${_FIREWALL2_tap9}]
echo [tap10=${_FIREWALL2_tap10}]
echo [telnetport=${_FIREWALL2_telnetport}]

#exit

Note - the firewall has two interfaces - em0 and em1.
em0 is considered the 'external' interface and
em1 is considered the 'internal' interface.

echo
echo "NOTE!!! telnet server running! To start QEMU telnet to localhost
$_FIREWALL2_telnetport"
echo

/usr/local/bin/qemu-system-x86_64 -monitor none \
 -serial telnet:localhost:${_FIREWALL2_telnetport},server=on,wait=off \
 -cpu qemu64 \

199

 -display gtk \
 -vga cirrus \
 -m ${_FIREWALL2_mem} \
 -cdrom ${_FIREWALL_ISO} \
 -boot order=cd,menu=on,splash=${_FW2_splash},splash-time=3000 \
 -drive if=none,id=drive0,cache=none,aio=threads,format=raw,file=${_FIREWALL2_img} \
 -device virtio-blk,drive=drive0 \
 -netdev tap,id=nd0,ifname=${_FIREWALL2_tap9},script=no,downscript=no \
 -device e1000,netdev=nd0,mac=${_FIREWALL2_mac1} \
 -netdev tap,id=nd1,ifname=${_FIREWALL2_tap10},script=no,downscript=no \
 -device e1000,netdev=nd1,mac=${_FIREWALL2_mac2} \
 -name \"${_FIREWALL2_name}\" &

==

SCRIPT: internal.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
FreeBSD QEMU VM startup script for internal VM.
#
internal.sh: FreeBSD QEMU VM startup script for internal VM.
Usage: sudo /bin/sh internal.sh
Note: Set up for serial console. Start another session and telnet to the port shown.
#
FreeBSD QEMU VM startup script
#
internal.sh
#
#set -x

pick up environment for this run
. ./vm_envs.sh

echo [ISO=${_INTERNAL_ISO}]
echo [mem=${_INTERNAL_mem}]
echo [hdsize=${_INTERNAL_hdsize}]
echo [img=${_INTERNAL_img}]
echo [mac=${_INTERNAL_mac}]
echo [name=${_INTERNAL_name}]
echo [tap5=${_INTERNAL_tap5}]
echo [telnetport=${_INTERNAL_telnetport}]

#

200

#exit

echo
echo "NOTE!!! telnet server running! To start QEMU telnet to localhost
$_INTERNAL_telnetport"
echo

/usr/local/bin/qemu-system-x86_64 -monitor none \
 -serial telnet:localhost:${_INTERNAL_telnetport},server=on,wait=off \
 -cpu qemu64 \
 -vga cirrus \
 -m ${_INTERNAL_mem} \
 -cdrom ${_INTERNAL_ISO} \
 -boot order=cd,menu=on,splash=${_INT_splash},splash-time=3000 \
 -drive if=none,id=drive0,cache=none,aio=threads,format=raw,file=${_INTERNAL_img} \
 -device virtio-blk,drive=drive0 \
 -netdev tap,id=nd0,ifname=${_INTERNAL_tap5},script=no,downscript=no \
 -device e1000,netdev=nd0,mac=${_INTERNAL_mac} \
 -name \"${_INTERNAL_name}\" &

==

#!/bin/sh
FreeBSD qemu vm startup script
#
jail1.sh
#
#set -x

pick up environment for this run
. ./vm_envs.sh

echo [ISO=${_JAIL1_ISO}]
echo [mem=${_JAIL1_mem}]
echo [hdsize=${_JAIL1_hdsize}]
echo [img=${_JAIL1_img}]
echo [mac=${_JAIL1_mac}]
echo [name=${_JAIL1_name}]
echo [tap2=${_JAIL1_tap2}]
echo [telnetport=${_JAIL1_telnetport}]

#
#exit
#

minimal check that environment is sane
#if ["X${_FBSD_ISO}" = "X" -o ! -s ${_FBSD_ISO}]
#then
echo "Parameter or file failure on _FBSD_ISO [${_FBSD_ISO}]"

201

echo "Check vm_envs.sh"
exit 1
#fi
#
#

#echo
#echo "NOTE!!! telnet server running! To start QEMU telnet to localhost
$_JAIL1_telnetport"
#echo
-serial telnet:localhost:${_JAIL1_telnetport},server=on,wait=on \

/usr/local/bin/qemu-system-x86_64 -monitor none \
 -serial telnet:localhost:${_JAIL1_telnetport},server=on,wait=off \
 -cpu qemu64 \
 -vga cirrus \
 -m ${_JAIL1_mem} \
 -cdrom ${_JAIL1_ISO} \
 -boot order=cd,menu=on,splash=${_JAIL1_splash},splash-time=3000 \
 -drive if=none,id=drive0,cache=none,aio=threads,format=raw,file=${_JAIL1_img} \
 -device virtio-blk,drive=drive0 \
 -netdev tap,id=nd0,ifname=${_JAIL1_tap12},script=no,downscript=no \
 -device e1000,netdev=nd0,mac=${_JAIL1_mac} \
 -name \"${_JAIL1_name}\" &

==

SCRIPT: mkbr.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
FreeBSD startup script for bridge and tap devices.
#
mkbr.sh: FreeBSD startup script for bridge and tap devices.
EXAMPLE Usage: sudo /bin/sh mkbr.sh reset bridge0 tap0 tap1 bridge1 tap2 bridge2
tap3 tap4 tap5 em0
#
mkbr.sh - manage bridge and tap interfaces for FreeBSD.
#
Have fun, but don't blame me if it smokes your machine.
#
This script is used to start the bridge and tap interfaces.
#
To create one bridge, two tap interfaces, and connect the

202

local ethernet interace (here em0), run under sudo as follows:
sudo /bin/sh mkbr.sh reset bridge0 tap0 tap1 em0
#
The script can be used to create any number of bridges and taps
for any internal network design:
sudo /bin/sh mkbr.sh reset bridge0 tap0 tap1 bridge1 tap2 tap3 tap4 bridge2 tap5
em0 ... etc.
#
To add other taps to existing bridges, do not specify the "reset" parameter.
sudo /bin/sh mkbr.sh bridge0 tap10 tap11 bridge1 tap12 tap13 ... etc.
#
To delete all bridge and tap devices:
sudo /bin/sh mkbr.sh reset
#
#

#set -x

usage() {
 echo "Usage: mkbr.sh ["reset"] <bridgeN> <tapA> [[<bringeM>] <tapB> <tapC> ...]"
 echo "You must be root to run this script."
 exit 1
}

if ["X0" != "X`id -u`"]
then
 usage
 fi

if [$# = 0]
then
 usage;
fi

if [$1 = "reset"]
then
 echo
 echo "Note - if_bridge and/or if_tap may be compiled into the kernel and can't be
unloaded. Adjust interfaces manually if necessary."
 echo
 echo "unloading..."
 kldunload if_bridge
 kldunload if_tap
 echo
 echo "Deleting any remaining bridge and tap devices:"

 for i in ifconfig -l
 do
 echo "Interface: ${i}"

203

 case ${i} in

 bridge*)
 echo " ... destroying bridge ${i}"
 ifconfig ${i} destroy
 ;;
 tap*)
 echo " ... destroying tap ${i}"
 ifconfig ${i} destroy
 ;;
 esac
 done

 sleep 1
 echo "loading..."
 kldload if_bridge
 kldload if_tap
 shift
 RESET="Y"
 echo "RESET=Y"
 # Before using the tap devices in QEMU, two sysctls require adjustment:
 sysctl net.link.tap.user_open=1
 sysctl net.link.tap.up_on_open=1
else
 RESET="N"
 echo "RESET=N"
fi

PARAM=$1

while ["X${PARAM}" != "X"]
do
echo "PARAM=[$PARAM]"

 case $PARAM in

 bridge*) BRIDGE=$1

 # if ["$RESET" = "Y"]
 # then
 echo ifconfig $BRIDGE create
 ifconfig $BRIDGE create
 echo ifconfig $BRIDGE
 ifconfig $BRIDGE
 # fi
 echo ifconfig $BRIDGE up
 ifconfig $BRIDGE up
 ;;

204

 tap*) TAP=$1
 # if ["$RESET" = "Y"]
 # then
 echo ifconfig $TAP create
 ifconfig $TAP create
 # fi
 echo "ifconfig $BRIDGE addm $TAP "
 ifconfig $BRIDGE addm $TAP
 ;;

 *) echo "*** Checking to see if $1 is a valid interface"
 TMPINT=$1
 RESULT="IS NOT"
 for i in ifconfig -l
 do
echo $i
 if ["${i}X" = "${TMPINT}X"]
 then
 echo "Found a valid interface: ${TMPINT} Adding it to the bridge. Check
results."
 echo "ifconfig $BRIDGE addm $TMPINT"
 ifconfig $BRIDGE addm $TMPINT
 RESULT="IS"
 break;
 else
 echo -n "."
 fi
 done

 echo "Interface ${TMPINT} $RESULT a valid interface."
 ;;
 esac

 shift
 PARAM=$1
done

exit 0

==

SCRIPT: runvm.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#

205

FreeBSD QEMU VM startup script for multiple VMs at once.
#
runvm.sh: FreeBSD QEMU VM startup script for multiple VMs.
EXAMPLE Usage: /bin/sh runvm.sh firewall external1 external2 internal
#
location: FreeBSD Host
#
runvm.sh - run virtual machines specified on the command line.
#
To use this script, run mkbr.sh first to set up the bridge and
tap configurations for the desired network architecture.
#
NOTE: this script works best on XFCE4 desktop as it takes advantage of the
xfce4-terminal and it's ability to use multiple tabs.
#
>>>> It is unlikely to work on another desktop. <<<<
#
Essentially, this script is a big case statement. It gets the
command line names of the virtual machines and calls a function
that starts the virtual machine.
#

pick up environment for this run
. ./vm_envs.sh

#set -x

#WKDIR=$HOME/LAB/SCRIPTS
export WKDIR=$HOME/ipfw

echo "[${WKDIR}]"

usage() {
 echo "Usage: /bin/sh runvm.sh vmname [vmname ...]"
 echo "Each virtual machine opens up on xfce4-terminal with two tabs -"
 echo " one for the qemu virtual machine, and one for the serial"
 echo " terminal interface."
 echo ""
 exit 1
}

CURDIR=pwd

if ["X${CURDIR}" != "X${WKDIR}/SCRIPTS"]
then
 usage;
fi

206

if [$# = 0]
then
 usage;
fi

Functions for each VM

dnshost_vm () {
 # DNS host
 echo "in function: [${_DNSHOST_telnetport}]"
 xfce4-terminal --window --geometry="80x24+50+50" --zoom="-1" \
 -T "${_DNSHOST_name}" -e "bash -c \"cd ${WKDIR}/SCRIPTS && sudo /bin/sh
dnshost.sh ; bash\"" \
 --tab -T "${_DNSHOST_name}" -e "bash -c \"cd ${WKDIR}/SCRIPTS && sleep 2 &&
(. ./vm_envs.sh;telnet -4 localhost ${_DNSHOST_telnetport}); bash\""
 return
}

external1_vm () {
 # external1
 echo "in function: [${_EXTERNAL1_telnetport}]"
 xfce4-terminal --window --geometry="80x24+75+75" --zoom="-1" \
 -T "${_EXTERNAL1_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sudo /bin/sh
external1.sh ; bash\"" \
 --tab -T "${_EXTERNAL1_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sleep 2 &&
(. ./vm_envs.sh;telnet localhost ${_EXTERNAL1_telnetport}); bash\""
 return
}

external2_vm () {
 # external2
 echo "in function: [${_EXTERNAL2_telnetport}]"
 xfce4-terminal --window --geometry="80x24+100+100" --zoom="-1" \
 -T "${_EXTERNAL2_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sudo /bin/sh
external2.sh ; bash\"" \
 --tab -T "${_EXTERNAL2_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sleep 2 &&
(. ./vm_envs.sh;telnet localhost ${_EXTERNAL2_telnetport}); bash\""
 return
}

external3_vm () {
 # external3
 echo "in function: [${_EXTERNAL3_telnetport}]"
 xfce4-terminal --window --geometry="80x24+125+125" --zoom="-1" \
 -T "${_EXTERNAL3_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sudo /bin/sh
external3.sh ; bash\"" \
 --tab -T "${_EXTERNAL3_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sleep 2 &&
(. ./vm_envs.sh;telnet localhost ${_EXTERNAL3_telnetport}); bash\""
 return

207

}

firewall_vm () {
 # Firewall
 echo "in function: [${_FIREWALL_telnetport}]"
 xfce4-terminal --window --geometry="80x24+150+150" --zoom="-1" \
 -T "${_FIREWALL_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sudo /bin/sh
firewall.sh ; bash\"" \
 --tab -T "${_FIREWALL_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sleep 2 && (.
./vm_envs.sh; telnet localhost ${_FIREWALL_telnetport}); bash\""
 return
}

firewall2_vm () {
 # Firewall2
 echo "in function: [${_FIREWALL2_telnetport}]"
 xfce4-terminal --window --geometry="80x24+175+175" --zoom="-1" \
 -T "${_FIREWALL2_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sudo /bin/sh
firewall2.sh ; bash\"" \
 --tab -T "${_FIREWALL2_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sleep 2 &&
(. ./vm_envs.sh;telnet localhost ${_FIREWALL2_telnetport}); bash\""
 return
}

internal_vm () {
 # internal
 echo "in function: [${_INTERNAL_telnetport}]"
 xfce4-terminal --window --geometry="80x24+200+200" --zoom="-1" \
 -T "${_INTERNAL_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sudo /bin/sh
internal.sh ; bash\"" \
 --tab -T "${_INTERNAL_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sleep 2 && (.
./vm_envs.sh;telnet localhost ${_INTERNAL_telnetport}); bash\""
 return
}

v6only_vm () {
 # v6only
 echo "in function: [${_V6ONLY_telnetport}]"
 xfce4-terminal --window --geometry="80x24+225+225" --zoom="-1" \
 -T "${_V6ONLY_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sudo /bin/sh
v6only.sh ; bash\"" \
 --tab -T "${_V6ONLY_name}" -e "bash -c \"cd $WKDIR/SCRIPTS && sleep 2 && (.
./vm_envs.sh;telnet localhost ${_V6ONLY_telnetport}); bash\""
 return
}

#
Startup the requested VMs
#

208

PARAM=$1

while ["X${PARAM}" != "X"]
do
 echo "PARAM = [${PARAM}]"

 case ${PARAM} in

 dnshost)
 echo "dnshost ..."
 echo "_DNSHOST_telnetport = [${_DNSHOST_telnetport}]"
 dnshost_vm
 ;;

 external1)
 echo "external1 ..."
 echo "_EXTERNAL1_telnetport = [${_EXTERNAL1_telnetport}]"
 external1_vm
 ;;

 external2)
 echo "external2 ..."
 echo "_EXTERNAL2_telnetport = [${_EXTERNAL2_telnetport}]"
 external2_vm
 ;;

 external3)
 echo "external3 ..."
 echo "_EXTERNAL3_telnetport = [${_EXTERNAL3_telnetport}]"
 external3_vm
 ;;

 firewall)
 echo "firewall ..."
 echo "_FIREWALL_telnetport = [${_FIREWALL_telnetport}]"
 firewall_vm
 ;;

 firewall2)
 echo "firewall2 ..."
 echo "_FIREWALL2_telnetport = [${_FIREWALL2_telnetport}]"
 firewall2_vm
 ;;

 internal)
 echo "internal ..."
 echo "_INTERNAL_telnetport = [${_INTERNAL_telnetport}]"
 internal_vm
 ;;

209

 v6only)
 echo "v6only ..."
 echo "_V6ONLY_telnetport = [${_V6ONLY_telnetport}]"
 v6only_vm
 ;;

 *)
 echo ""
 echo "*** ERROR: NO VM NAMED [$PARAM]"
 echo ""
 ;;

 esac

 shift

 sleep 3

 PARAM=$1
done

exit 0

==

SCRIPT: swim.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
Serial Window Management Script Using tmux. (swim.sh)
#
Usage: /bin/sh swim.sh
Note: This program manages multiple serial termainal windows for QEMU
VMs on the host.
Make sure to uncomment the lines below for the windows you want.
#set -x

Check for an existing tmux session
tmux has-session -t 0 2>/dev/null

if [$? != 0]; then
 tmux new-session -d -s 0

 tmux new-window -t 0:1 -n 'firewall' 'echo; echo Use \"telnet localhost 4450\" for
firewall ; echo; /bin/sh'

210

 tmux new-window -t 0:2 -n 'external1' 'echo; echo Use \"telnet localhost 4410\" for
external1; echo; /bin/sh'
 tmux new-window -t 0:3 -n 'external2' 'echo; echo Use \"telnet localhost 4420\" for
external2; echo; /bin/sh'
 tmux new-window -t 0:4 -n 'external3' 'echo; echo Use \"telnet localhost 4430\" for
external3; echo; /bin/sh'
tmux new-window -t 0:5 -n 'internal' 'echo; echo Use \"telnet localhost 44200\"
for internal; echo; /bin/sh'
tmux new-window -t 0:6 -n 'firewall2' 'echo; echo Use \"telnet localhost 4250\"
for firewall2; echo; /bin/sh'
tmux new-window -t 0:7 -n 'v6only' 'echo; echo Use \"telnet localhost 4460\"
for v6only; echo; /bin/sh'
tmux new-window -t 0:8 -n 'dnshost' 'echo; echo Use \"telnet localhost 4453\"
for dnshost; echo; /bin/sh'
tmux new-window -t 0:9 -n 'jail1' 'echo; echo Use \"telnet localhost 4470\"
for jail1; echo; /bin/sh'

 # Set the default command shell
 set-option -g default-command "/bin/sh"
fi

Set the focus on window 0:0, your existing shell.
tmux select-window -t 0:0

Attach to the session
tmux attach-session -t 0

exit

==

SCRIPT: scim.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
Serial Window Management Script Using screen. (scim.sh)
#
Usage: /bin/sh scim.sh
Note: This program manages multiple serial termainal windows for QEMU VMs.
Make sure to uncomment the lines below for the windows you want.
#
Note:
In order to show the status line for the list of active windows,
this program requires a .screenrc file in the $HOME directory with
the following directives:

211

#
hardstatus alwayslastline
hardstatus string "%{= bw}%-w%{= rW}[%n %t]%{-}%+w %=%{= kW} %H | %Y-%m-%d %c"
#

screen -list 2> /dev/null

Check if the session is already live
if [$? != 0]; then

 # Create a new session and add windows
 screen -dmS newsession # Start a new session

 # Uncomment windows as needed.
 screen -S newsession -X screen -t "firewall" sh -c "echo; echo Use \"telnet
localhost 4450\" for firewall ; echo; /bin/sh"
 screen -S newsession -X screen -t "external1" sh -c "echo; echo Use \"telnet
localhost 4410\" for external1 ; echo; /bin/sh"
 screen -S newsession -X screen -t "external2" sh -c "echo; echo Use \"telnet
localhost 4420\" for external1 ; echo; /bin/sh"
 screen -S newsession -X screen -t "external3" sh -c "echo; echo Use \"telnet
localhost 4430\" for external1 ; echo; /bin/sh"
screen -S newsession -X screen -t "internal" sh -c "echo; echo Use \"telnet
localhost 44200\" for external1 ; echo; /bin/sh"
screen -S newsession -X screen -t "firewall2" sh -c "echo; echo Use \"telnet
localhost 4250\" for external1 ; echo; /bin/sh"
screen -S newsession -X screen -t "v6only" sh -c "echo; echo Use \"telnet
localhost 4460\" for external1 ; echo; /bin/sh"
screen -S newsession -X screen -t "dnshost" sh -c "echo; echo Use \"telnet
localhost 4453\" for external1 ; echo; /bin/sh"
screen -S newsession -X screen -t "jail1" sh -c "echo; echo Use \"telnet
localhost 4470\" for external1 ; echo; /bin/sh"

Focus on window 0
 screen -S newsession -X select 0
fi

Light it up.
screen -x newsession -p 0

==

SCRIPT: v6only.sh

#!/bin/sh
IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer

212

#
FreeBSD QEMU VM startup script for v6only VM.
#
v6only.sh: FreeBSD QEMU VM startup script for v6only VM.
Usage: sudo /bin/sh v6only.sh
Note: Set up for serial console. Start another session and telnet to the port shown.
#
FreeBSD QEMU VM startup script
#
v6only.sh
#
#set -x

pick up environment for this run
. ./vm_envs.sh

echo [ISO=${_V6ONLY_ISO}]
echo [mem=${_V6ONLY_mem}]
echo [hdsize=${_V6ONLY_hdsize}]
echo [img=${_V6ONLY_img}]
echo [mac=${_V6ONLY_mac}]
echo [name=${_V6ONLY_name}]
echo [tap6=${_V6ONLY_tap6}]
echo [telnetport=${_V6ONLY_telnetport}]

#
#exit

echo
echo "NOTE!!! telnet server running! To start QEMU telnet to localhost
$_V6ONLY_telnetport"
echo

/usr/local/bin/qemu-system-x86_64 -monitor none \
 -serial telnet:localhost:${_V6ONLY_telnetport},server=on,wait=off \
 -cpu qemu64 \
 -vga cirrus \
 -m ${_V6ONLY_mem} \
 -cdrom ${_V6ONLY_ISO} \
 -boot order=cd,menu=on,splash=${_V6_splash},splash-time=3000 \
 -drive if=none,id=drive0,cache=none,aio=threads,format=raw,file=${_V6ONLY_img} \
 -device virtio-blk,drive=drive0 \
 -netdev tap,id=nd0,ifname=${_V6ONLY_tap6},script=no,downscript=no \
 -device e1000,netdev=nd0,mac=${_V6ONLY_mac} \
 -name \"${_V6ONLY_name}\" &

==

213

SCRIPT: vm_envs.sh

IPFW Primer
License: 3-clause BSD
Author: Jim Brown, jpb@jimby.name
Code: https://github.com/jimmyb-gh/ipfw-primer
#
FreeBSD QEMU VM environment script.
#
vmenv.sh: FreeBSD QEMU VM environment setup script.
Usage: ./bin/sh vmenv.sh
#
vm_envs.sh - environment for setting up virtual machines
for the IPFW examples lab.
#
Set the environment variables below (or keep the defaults)
Note that the default disk size for each virtual machine is
4GB - so all five VMs will take up about 32GB if you preallocate
space.
#
In brief:
#
Install FreeBSD on the host machine and update to latest patch level.
Install desktop software.
Install QEMU (latest)
Install nmap (needed for ncat)
Install sudo
#
#
The script mkbr.sh should be run before starting
the virtual machines. mkbr.sh sets up the bridge and tap
devices needed by the VMs.
#
sudo /bin/sh ./mkbr.sh reset bridge0 tap0 tap1 tap2 tap3 em0 bridge1 tap4 tap5
#
This will set up the devices needed by QEMU.
#
#
#The file directory layout for the examples is:
#
~/ipfw
/SCRIPTS
_CreateAllVMs.sh (create Qemu disks images)
dnshost.sh (run script for dns server VM)
external1.sh (run scripts for external VMs)
external2.sh "
external3.sh "
firewall.sh (run script for firewall VM)
firewall2.sh (run script for firewall2 VM)
internal.sh (script to setup internal host)
jail1.sh (script to setup jail1 host)

214

v6only.sh (run script for IPv6 only VM)
mkbr.sh (script to create bridge and tap devices)
vm_envs.sh (script to manage all parameters)
runvm.sh (script to manage all virtual machines)
/BMP
dns_splash_640x480.bmp
external1_splash_640x480.bmp
external2_splash_640x480.bmp
external3_splash_640x480.bmp
internal_splash_640x480.bmp
jail1_splash_640x480.bmp
ipfw2_splash_640x480.bmp
ipfw_splash_640x480.bmp
v6only_splash_640x480.bmp
dnshost_splash_640x480.bmp
/ISO
fbsd.iso (latest FreeBSD install iso)
/VM
dnshost.qcow2 (Qemu disk image for dns host)
external1.qcow2 (Qemu disk image for external hosts)
external2.qcow2 "
external3.qcow2 "
firewall.qcow2 (Qemu disk image for firewall)
firewall2.qcow2 (Qemu disk image for firewall2)
internal.qcow2 (Qemu disk image for an internal host)
jail1.qcow2 (Qemu disk image for an jail1 host)
v6only.qcow2 (Qemu disk image for an ipv6only host)
#
#
Start the VMs and install / test one at a time.
#
sudo /bin/sh firewall.sh
sudo /bin/sh firewall2.sh
sudo /bin/sh external1.sh
sudo /bin/sh external2.sh
sudo /bin/sh external3.sh
sudo /bin/sh internal.sh
sudo /bin/sh jail1.sh
sudo /bin/sh v6only.sh
sudo /bin/sh dnshost.sh
#
Each install should first utilize DHCP to get a valid IP address
After install, proceed to update FreeBSD with "freebsd-update fetch install"
Install packages:
Use whatever shell you prefer. Bash is listed below.
Firewall - pkg install bash cmdwatch lynx iperf3 nmap hping3 nginx
All others - pkg install bash cmdwatch lynx iperf3 nmap hping3 nginx
DNS host - pkg install bind918 dual-dhclient bash cmdwatch lynx nginx
#
Reset all IP addresses for static usage:
#

215

Host interface: add 172.16.10.100/24 alias
Disable any firewall (pf, ipfw, etc.) on the host.
BE SURE this is Ok for your environment.
#
Firewall em0 172.16.10.50/24, default gateway 172.16.10.100
em1 10.10.10.50/24
#
Firewall2 em0 as needed
em1 as needed
#
External1: em0 172.16.10.10/24, default gateway 172.16.10.100
External2: em0 172.16.10.20/24, default gateway 172.16.10.100
External3: em0 172.16.10.30/24, default gateway 172.16.10.100
Internal: em0 10.10.10.200/24, default gateway 10.10.10.50
#
v6only as needed
dnshost as needed
jail1 as needed
#
#

export _BASE=/home/jpb/ipfw

Bridge and tap info
export _FIREWALL_tap0=tap0
export _EXTERNAL1_tap1=tap1
export _EXTERNAL2_tap2=tap2
export _EXTERNAL3_tap3=tap3
export _FIREWALL_tap4=tap4
export _INTERNAL_tap5=tap5
export _JAIL1_tap12=tap12
export _V6ONLY_tap6=tap6
export _DNSHOST_tap7=tap7
export _DNSHOST_tap8=tap8
export _FIREWALL2_tap9=tap9
export _FIREWALL2_tap10=tap10
export _DNSHOST_tap11=tap11

export _bridge0_=bridge0
export bridge1=bridge1
export bridge2=bridge2

Disk sizes
export _EXTERNAL1_hdsize=4G
export _EXTERNAL2_hdsize=4G
export _EXTERNAL3_hdsize=4G
export _FIREWALL_hdsize=4G
export _FIREWALL2_hdsize=4G
export _INTERNAL_hdsize=4G
export _JAIL1_hdsize=8G # Note larger size disk

216

export _V6ONLY_hdsize=4G
export _DNSHOST_hdsize=4G

Is this needed anymore?
export _FBSD_ISO=${_BASE}/ISO/fbsd.iso

Boot iso locations
export _DNSHOST_ISO=${_BASE}/ISO/fbsd.iso
export _EXTERNAL1_ISO=${_BASE}/ISO/fbsd.iso
export _EXTERNAL2_ISO=${_BASE}/ISO/fbsd.iso
export _EXTERNAL3_ISO=${_BASE}/ISO/fbsd.iso
export _FIREWALL_ISO=${_BASE}/ISO/fbsd.iso
export _FIREWALL2_ISO=${_BASE}/ISO/fbsd.iso
export _INTERNAL_ISO=${_BASE}/ISO/fbsd.iso
export _JAIL1_ISO=${_BASE}/ISO/fbsd.iso
export _V6ONLY_ISO=${_BASE}/ISO/fbsd.iso

Memory sizes
export _DNSHOST_mem=1024
export _EXTERNAL1_mem=1024 # lower all to 512 if necessary
export _EXTERNAL2_mem=1024
export _EXTERNAL3_mem=1024
export _FIREWALL_mem=1024
export _FIREWALL2_mem=1024
export _INTERNAL_mem=1024
export _JAIL1_mem=8192 # Note larger size memory for using ZFS
export _V6ONLY_mem=1024

Qemu disk image locations.
export _DNSHOST_img=${_BASE}/VM/dnshost.qcow2
export _EXTERNAL1_img=${_BASE}/VM/external1.qcow2
export _EXTERNAL2_img=${_BASE}/VM/external2.qcow2
export _EXTERNAL3_img=${_BASE}/VM/external3.qcow2
export _FIREWALL_img=${_BASE}/VM/firewall.qcow2
export _FIREWALL2_img=${_BASE}/VM/firewall2.qcow2
export _INTERNAL_img=${_BASE}/VM/internal.qcow2
export _JAIL1_img=${_BASE}/VM/jail1.qcow2
export _V6ONLY_img=${_BASE}/VM/v6only.qcow2

MAC addresses
export _DNSHOST_mac1=02:49:53:53:53:53
export _DNSHOST_mac2=02:49:53:53:54:54
export _DNSHOST_mac3=02:49:53:53:55:55
export _EXTERNAL1_mac=02:45:58:54:31:10
export _EXTERNAL2_mac=02:45:58:54:32:20
export _EXTERNAL3_mac=02:45:58:54:33:30
export _FIREWALL_mac1=02:49:50:46:57:41
export _FIREWALL2_mac1=02:49:50:00:22:22
export _FIREWALL_mac2=02:49:50:46:57:42
export _FIREWALL2_mac2=02:49:50:22:22:22

217

export _INTERNAL_mac=02:49:4E:54:0a:42
export _JAIL1_mac=02:49:ba:ad:ba:be
export _V6ONLY_mac=02:49:de:ad:be:ef

VM names
export _DNSHOST_name=DNSHOST
export _EXTERNAL1_name=EXTERNAL1
export _EXTERNAL2_name=EXTERNAL2
export _EXTERNAL3_name=EXTERNAL3
export _FIREWALL_name=FIREWALL
export _FIREWALL2_name=FIREWALL2
export _INTERNAL_name=INTERNAL
export _JAIL1_name=JAIL1
export _V6ONLY_name=V6ONLY

Slash images
export _DNS_splash=${_BASE}/BMP/dns_splash_640x480.bmp
export _EX1_splash=${_BASE}/BMP/external1_splash_640x480.bmp
export _EX2_splash=${_BASE}/BMP/external2_splash_640x480.bmp
export _EX3_splash=${_BASE}/BMP/external3_splash_640x480.bmp
export _FW_splash=${_BASE}/BMP/ipfw_splash_640x480.bmp
export _FW2_splash=${_BASE}/BMP/ipfw2_splash_640x480.bmp
export _INT_splash=${_BASE}/BMP/internal_splash_640x480.bmp
export _JAIL1_splash=${_BASE}/BMP/jail1_splash_640x480.bmp
export _V6_splash=${_BASE}/BMP/ipv6_splash_640x480.bmp

#
Telnet ports
export _DNSHOST_telnetport=4453
export _EXTERNAL1_telnetport=4410
export _EXTERNAL2_telnetport=4420
export _EXTERNAL3_telnetport=4430
export _FIREWALL_telnetport=4450
export _FIREWALL2_telnetport=4250
export _INTERNAL_telnetport=44200
export _V6ONLY_telnetport=4460
export _JAIL1_telnetport=4470

Bridge and Tap configurations.
#
Note: em0 is used for the host interface.
Change as needed.
#
Two bridge configuration
Standard examples
#
em0
|
External1(tap1) -----bridge0------(tap0)Firewall
External2(tap2) -----+ | (tap4)

218

External3(tap3) -------+ |
bridge1
|
Internal(tap5) -----------------------------+
#
sudo /bin/sh mkbr.sh reset bridge0 tap0 tap1 tap2 tap3 em0
#
#
#
Two bridge configuration
NAT & LSNAT examples
#
#
#
(firewall does LSNAT load balancing)
External1(tap1) -----bridge0------(tap0)Firewall
External2(tap2) -----+ | (tap4)
External3(tap3) -------+ |
(these function as internal machines) bridge1----em0
|
Internal(tap5) -----------------------------+
(this functions as an external machine)
#
sudo /bin/sh mkbr.sh reset bridge0 tap0 tap1 tap2 tap3 bridge1 tap4 tap5 em0
#
#
#
Two bridge configuration
NAT64/DNS64 example
#
ipv4 only NAT64 Translator
External1(tap1) ------bridge0-----(tap0)Firewall
(ipv4 only) + (tap4)
(webserver) | +
dnshost(tap7) |
(DNS server) |
(running DNS64) |
(tap8) |
| |
+ |
ipv6 only |
v6only(tap6) --------bridge1----------------+
(v6 only host)
#
sudo /bin/sh mkbr.sh reset bridge0 tap0 tap1 tap7 bridge1 tap4 tap6 tap8
#
#

==

219

CODE: divert.c

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <string.h>
#include <err.h>
#include <sys/systm.h>

#define DIVERT_PORT 700

void hexdump(void *ptr, int length, const char *hdr, int flags);

int
main(int argc, char *argv[])
{
 int fd, s;
 struct sockaddr_in sin;
 socklen_t sin_len;

 printf("Opening divert on port %d\n",DIVERT_PORT);

 fd = socket(PF_DIVERT, SOCK_RAW, 0);
 if (fd == -1)
 err(1, "socket");

 memset(&sin, 0, sizeof(sin));
 sin.sin_family = AF_INET;
 sin.sin_port = htons(DIVERT_PORT);
 sin.sin_addr.s_addr = 0;

 sin_len = sizeof(struct sockaddr_in);

 s = bind(fd, (struct sockaddr *) &sin, sin_len);
 if (s == -1)
 err(1, "bind");

 for (;;) {
 ssize_t n;
 char packet[IP_MAXPACKET];
 struct ip *ip;
 struct tcphdr *th;
 int hlen;
 char src[64], dst[64], printbuff[12];

220

 memset(src, 0, sizeof(src));
 memset(dst, 0, sizeof(dst));
 memset(printbuff, 0, sizeof(printbuff));

 memset(packet, 0, sizeof(packet));
 n = recvfrom(fd, packet, sizeof(packet), 0,
 (struct sockaddr *) &sin, &sin_len);
 if (n == -1) {
 warn("recvfrom");
 continue;
 }
 if (n < sizeof(struct ip)) {
 warnx("packet is too short");
 continue;
 }

 ip = (struct ip *) packet;
 hlen = ip->ip_hl << 2;
 if (hlen < sizeof(struct ip) || ntohs(ip->ip_len) < hlen ||
 n < ntohs(ip->ip_len)) {
 warnx("invalid IPv4 packet");
 continue;
 }

 th = (struct tcphdr *) (packet + hlen);

 if (inet_ntop(AF_INET, &ip->ip_src, src,
 sizeof(src)) == NULL)
 (void)strlcpy(src, "?", sizeof(src));

 if (inet_ntop(AF_INET, &ip->ip_dst, dst,
 sizeof(dst)) == NULL)
 (void)strlcpy(dst, "?", sizeof(dst));

 printf("%s:%u -> %s:%u\n",
 src,
 ntohs(th->th_sport),
 dst,
 ntohs(th->th_dport)
);

 /*
 * dump the packet in hex and ascii with hexdump(3)
 */

 hexdump((void *)packet, n, "|",0);

 n = sendto(fd, packet, n, 0, (struct sockaddr *) &sin,

221

 sin_len);
 if (n == -1)
 warn("sendto");
 }

 return 0;
}

222

Appendix C: Appendix C: Networking
References
References for understanding IP based communications and building firewalls.

From /etc/rc.firewall:

 Building Internet Firewalls, 2nd Edition
 Brent Chapman and Elizabeth Zwicky

 O'Reilly & Associates, Inc
 ISBN 1-56592-871-7
 http://www.ora.com/
 http://www.oreilly.com/catalog/fire2/

 For a more advanced treatment of Internet Security read:

 Firewalls and Internet Security: Repelling the Wily Hacker, 2nd Edition
 William R. Cheswick, Steven M. Bellowin, Aviel D. Rubin

 Addison-Wesley / Prentice Hall
 ISBN 0-201-63466-X
 http://www.pearsonhighered.com/
 http://www.pearsonhighered.com/educator/academic/product/0,3110,020163466X,00.html

Additional references:

 TCP/IP Illustrated, Volume 1: The Protocols
 Author: W. Richard Stevens
 Publisher: Addison-Wesley Professional
 Publisher Website: Addison-Wesley Professional
 Date Published: November 1994
 ISBN: 978-0201633467

 The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols Reference
 Author: Charles M. Kozierok
 Publisher: No Starch Press
 Publisher Website: No Starch Press
 Date Published: October 2005
 ISBN: 978-1593270476

 Internetworking with TCP/IP Volume One: Principles, Protocols, and Architecture
 Author: Douglas E. Comer
 Publisher: Pearson
 Publisher Website: Pearson
 Date Published: 6th Edition, 2013
 ISBN: 978-0136085300

223

 Computer Networks: A Systems Approach
 Authors: Larry L. Peterson and Bruce S. Davie
 Publisher: Morgan Kaufmann
 Publisher Website: Morgan Kaufmann
 Date Published: 6th Edition, 2021
 ISBN: 978-0128182000

Additional resources regarding firewalls:

 Network Security, Firewalls, and VPNs
 Authors: J. Michael Stewart, Denise Kinsey
 Publisher: Jones & Bartlett Learning
 Publisher Website: Jones & Bartlett Learning
 Date Published: October 2020
 ISBN: 978-1284183696

 Firewall Fundamentals
 Author: David W. Chapman Jr.
 Publisher: Cisco Press
 Publisher Website: Cisco Press
 Date Published: June 2006
 ISBN: 978-1587052213

 The Best Damn Firewall Book Period
 Author: Thomas W. Shinder
 Publisher: Syngress
 Publisher Website: Syngress
 Date Published: January 2008
 ISBN: 978-1597492188

 Guide to Firewalls and Network Security: Intrusion Detection and VPNs
 Authors: Michael E. Whitman, Herbert J. Mattord, Richard Austin, Greg Holden
 Publisher: Cengage Learning
 Publisher Website: Cengage Learning
 Date Published: 2008
 ISBN: 978-1435420168

224

Appendix D: Appendix D. Managing Serial
Terminals with tmux and screen

D.1. Using tmux(1) for Managing Serial Terminals
Install tmux with:

pkg install tmux

Run sh swim.sh in the SCRIPTS directory to start up the session manager running tmux.

Figure 46. Starting Up tmux(1) Session Manager

The figure shows five named windows in one session (session [0]) with the tmux status line in
green at the bottom:

Simplified tmux(1) Usage

tmux has a hierarchical organization.

1. Sessions - starts a session implicitly when tmux is run

a. Windows - adds a window with the command "tmux add-window" which can take a
number of parameters tmux allows multiple windows in a session at the same time. The
current window is starred ("*") in the status bar at the bottom of the main window.

i. Panes - splits a window into one or more panes either horizontally, or vertically

The swim.sh script shows how to set up one session with several windows. Panes are not used.

225

https://man.freebsd.org/cgi/man.cgi?query=tmux&sektion=1&format=html

tmux is controlled by the user typing in any open window or pane. tmux uses Ctl + b as its control
key. Give tmux commands by typing the control key followed by one or more letters. To move from
window to window use Ctl + b n to move to the next window or Ctl + b p to move to the previous
window. Use Ctl + b ? for a list of all key bindings.

Type tmux kill-server in any session window to completely leave tmux.

Consult the tmux manual page tmux(1) for more usage details.

Accessing the QEMU Serial Consoles

To access the VM serial consoles, move to the indicated window and telnet to the port on the local
host for that VM:

Move to the external1 window in tmux, then

~/ipfw/SCRIPTS $ telnet localhost 4410
Trying ::1...
Connected to localhost.
Escape character is '^]'.

FreeBSD/amd64 (external1) (ttyu0)

login:

The swim.sh script has the following un-commented lines. Un-comment additional lines as needed

• 0:bash - a terminal window of the user running swim.sh

• 1:firewall - a terminal window to access the firewall VM

• 2:external1 - a terminal window to access the external1 VM

• 3:external2 - a terminal window to access the external2 VM

• 4:external3 - a terminal window to access the external3 VM

The current window is marked with the '*' character in the status bar.

Note that the swim.sh script has entries for all windows used in this book. Uncomment the entries
needed.

Run sh swim.sh in the SCRIPTS directory to start up the session manager running tmux.

D.2. Using screen(1) for Managing Serial Terminals
Install screen with:

pkg install screen

screen, like tmux, is a terminal window manager. screen has its own control key - Ctl + a , and like

226

https://man.freebsd.org/cgi/man.cgi?query=tmux&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=screen&sektion=1&format=html

tmux a list of key bindings is available at Ctl + a ? .

By default, it does not use a status line, and once activated, it looks like no manager is active at all.
Type screen -ls to determine if there is an active screen session running.

To display a status line in a live session use:

Ctrl + a : hardstatus alwayslastline

Ctrl + a : hardstatus string "%{= bw}%-w%{= rW}[%n %t]%{-}%+w %=%{= kW} %H | %Y-%m-%d
%c"

To always display the highlighted status line, edit the .screenrc file in the user '$HOME` directory
and add:

hardstatus alwayslastline
hardstatus string "%{= bw}%-w%{= rW}[%n %t]%{-}%+w %=%{= kW} %H | %Y-%m-%d %c"

To close all screen windows immediately and exit:

% screen -X quit

The scim.sh script has the following un-commented lines. Un-comment additional lines as needed

• 0:bash - a terminal window of the user running scim.sh

• 1:firewall - a terminal window to access the firewall VM

• 2:external1 - a terminal window to access the external1 VM

• 3:external2 - a terminal window to access the external2 VM

• 4:external3 - a terminal window to access the external3 VM

The current window is highlighted in the status bar.

Note that the scim.sh script has entries for all windows used in this book. Uncomment the entries
needed.

Run sh scim.sh in the SCRIPTS directory to start up the session manager running screen.

227

Appendix E: Appendix E: DNS Server
Configuration
DNS configuration for IPFW Primer book.

Manifest of dnshost scripts and file.

File: dnshost_usrlocaletc_namedb.tgz

 Description: Contains the configuration for the BIND 9 DNS services that run on this
machine.

 Installation:

 Install bind9 package first, then untar this collection as follows:

 # cd /usr/local/etc
 # tar xvzf dnshost_usrlocaletc_namedb.tgz

 Contents:

 % tar tvzf dnshost_usrlocaletc_namedb.tgz
 drwxr-xr-x 0 root wheel 0 Nov 19 12:00 namedb/
 -rw-r--r-- 0 bind bind 2403 Nov 19 11:59 namedb/bind.keys
 drwxr-xr-x 0 bind bind 0 Nov 19 11:59 namedb/dynamic/
 -rw-r--r-- 0 bind bind 2618 Dec 2 12:34 namedb/named.conf
 -rw-r--r-- 0 bind bind 21992 Nov 19 11:59 namedb/named.conf.sample
 -rw-r--r-- 0 bind bind 927 Nov 19 11:59 namedb/named.root
 -rw-r--r-- 0 bind bind 3317 Nov 19 11:59 namedb/named.root.SAVE
 drwxr-xr-x 0 bind bind 0 Dec 2 15:35 namedb/primary/
 -rw------- 0 bind bind 100 Nov 19 11:59 namedb/rndc.key
 drwxr-xr-x 0 bind bind 0 Nov 19 11:59 namedb/secondary/
 drwxr-xr-x 0 bind bind 0 Nov 19 11:59 namedb/working/
 -rw-r--r-- 0 bind bind 297 Nov 19 11:59 namedb/working/managed-keys.bind
 -rw-r--r-- 0 bind bind 355 Nov 19 11:59 namedb/primary/ptr_198.51
 -rw-r--r-- 0 bind bind 465 Nov 19 11:59 namedb/primary/ptr_203.0
 -rw-r--r-- 0 bind bind 693 Dec 1 19:29 namedb/primary/example.com
 -rw-r--r-- 0 bind bind 148 Nov 19 11:59 namedb/primary/empty
 -rw-r--r-- 0 bind bind 407 Nov 19 14:12 namedb/primary/ptr_ipv6
 -rw-r--r-- 0 bind bind 287 Dec 2 15:35 namedb/primary/managed-keys.bind
 -rw-r--r-- 0 bind bind 226 Nov 19 11:59 namedb/primary/localhost-reverse
 -rw-r--r-- 0 bind bind 158 Nov 19 11:59 namedb/primary/localhost-forward
 -rw-r--r-- 0 bind bind 351 Dec 1 19:30 namedb/primary/ptr_192.168
 %

===

228

bind.keys

Copyright (C) Internet Systems Consortium, Inc. ("ISC")
#
SPDX-License-Identifier: MPL-2.0
#
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, you can obtain one at https://mozilla.org/MPL/2.0/.
#
See the COPYRIGHT file distributed with this work for additional
information regarding copyright ownership.

The bind.keys file is used to override the built-in DNSSEC trust anchors
which are included as part of BIND 9. The only trust anchors it contains
are for the DNS root zone ("."). Trust anchors for any other zones MUST
be configured elsewhere; if they are configured here, they will not be
recognized or used by named.
#
To use the built-in root key, set "dnssec-validation auto;" in the
named.conf options, or else leave "dnssec-validation" unset. If
"dnssec-validation" is set to "yes", then the keys in this file are
ignored; keys will need to be explicitly configured in named.conf for
validation to work. "auto" is the default setting, unless named is
built with "configure --disable-auto-validation", in which case the
default is "yes".
#
This file is NOT expected to be user-configured.
#
Servers being set up for the first time can use the contents of this file
as initializing keys; thereafter, the keys in the managed key database
will be trusted and maintained automatically.
#
These keys are current as of Mar 2019. If any key fails to initialize
correctly, it may have expired. In that event you should replace this
file with a current version. The latest version of bind.keys can always
be obtained from ISC at https://www.isc.org/bind-keys.
#
See https://data.iana.org/root-anchors/root-anchors.xml for current trust
anchor information for the root zone.

trust-anchors {
 # This key (20326) was published in the root zone in 2017.
 . initial-key 257 3 8
"AwEAAaz/tAm8yTn4Mfeh5eyI96WSVexTBAvkMgJzkKTOiW1vkIbzxeF3
 +/4RgWOq7HrxRixHlFlExOLAJr5emLvN7SWXgnLh4+B5xQlNVz8Og8kv
 ArMtNROxVQuCaSnIDdD5LKyWbRd2n9WGe2R8PzgCmr3EgVLrjyBxWezF
 0jLHwVN8efS3rCj/EWgvIWgb9tarpVUDK/b58Da+sqqls3eNbuv7pr+e
 oZG+SrDK6nWeL3c6H5Apxz7LjVc1uTIdsIXxuOLYA4/ilBmSVIzuDWfd
 RUfhHdY6+cn8HFRm+2hM8AnXGXws9555KrUB5qihylGa8subX2Nn6UwN
 R1AkUTV74bU=";

229

};

===

named.conf

// Refer to the named.conf(5) and named(8) man pages, and the documentation
// in /usr/local/share/doc/bind for more details.

acl trusted-queriers {
 203.0.113.0/24;
 2001:db8:12::/64;
 127.0.0.1;
 ::1;
 localhost;
};

acl v6only-networks {
 2001:db8:12::/64;
};

options {
 directory "/usr/local/etc/namedb/primary";
 pid-file "/var/run/named/pid";
 dump-file "/var/dump/named_dump.db";
 statistics-file "/var/stats/named.stats";
 listen-on { any; };
 listen-on-v6 { any; };
 recursion no;
 allow-transfer { trusted-queriers; };

// NOTE: Remove comments when using DNS64
// dns64 64:FF9B::/96 {
// clients { any; };
// exclude { 64:FF9B::/96; ::ffff:0000:0000/96; };
// suffix ::;
// };

};

// forward zone
zone "example.com" {
 type primary;
 file "/usr/local/etc/namedb/primary/example.com";

230

 allow-transfer {trusted-queriers;};
};

// reverse zones for 203.0, 198.51, 192.168, and 2001:0db8
zone "0.203.in-addr.arpa" {
 type primary;
 file "/usr/local/etc/namedb/primary/ptr_203.0";
 allow-transfer {trusted-queriers;};
};

zone "51.198.in-addr.arpa"{
 type primary;
 file "/usr/local/etc/namedb/primary/ptr_198.51";
 allow-transfer {trusted-queriers;};
};

zone "2.1.0.0.8.b.d.0.1.0.0.2.ip6.arpa" {
 type primary;
 file "/usr/local/etc/namedb/primary/ptr_ipv6";
 allow-transfer {trusted-queriers; };
};

zone "168.192.in-addr.arpa" {
 type primary;
 file "/usr/local/etc/namedb/primary/ptr_192.168";
 allow-transfer {trusted-queriers;};
};

// Block below added by BIND9
// RFCs 1912, 5735 and 6303 (and BCP 32 for localhost)
zone "localhost" { type primary; file "/usr/local/etc/namedb/primary/localhost-
forward"; };
zone "127.in-addr.arpa" { type primary; file "/usr/local/etc/namedb/primary/localhost-
reverse"; };
zone "255.in-addr.arpa" { type primary; file "/usr/local/etc/namedb/primary/empty"; };
// RFC 1912-style zone for IPv6 localhost address (RFC 6303)
zone "0.ip6.arpa" { type primary; file "/usr/local/etc/namedb/primary/localhost-
reverse"; };
// "This" Network (RFCs 1912, 5735 and 6303)
zone "0.in-addr.arpa" { type primary; file "/usr/local/etc/namedb/primary/empty"; };

// Our own root zone file so we don't leak out to the Internet
zone "." {
 type master;
 file "/usr/local/etc/namedb/named.root";
 allow-transfer {trusted-queriers; };
 };

231

===

named.root

; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the "cache . <file>"
; configuration file of BIND domain name servers).
;
; This file is made available by InterNIC
; under anonymous FTP as
; file /domain/named.cache
; on server FTP.INTERNIC.NET
; -OR- RS.INTERNIC.NET
;
; last update: November 16, 2017
; related version of root zone: 2017111601
;
; FORMERLY NS.INTERNIC.NET
;

$TTL 3600

. 3600 IN SOA dnshost.example.com. jpb.dnshost.example.com (
 100 ; serial
 14400 ; refresh
 7200 ; retry
 28800 ; expire
 64000) ; min neg cache expire

. 3600 NS dnshost.example.com.
dnshost.example.com. 3600 A 203.0.113.53
dnshost.example.com. 3600 AAAA 2001:db8:12::53

===

rndc.key

key "rndc-key" {
 algorithm hmac-sha256;
 secret "wesiGsTgu7OwV44aA6C2P8XmZdW4z/YdPJ4D/vRNPTM=";
};

232

===

empty

$TTL 3h
@ SOA @ nobody.localhost. 42 1d 12h 1w 3h
 ; Serial, Refresh, Retry, Expire, Neg. cache TTL

@ NS @

; Silence a BIND warning
@ A 127.0.0.1

===

example.com

$TTL 3600
@ IN SOA example.com. jpb.example.com. (
 5 ; Serial
 3h ; Refresh
 1h ; Retry
 1w ; Expire
 1h) ; Negative Cache TTL
;
; name servers - NS records
@ IN NS dnshost.example.com.

; name servers - A records
dnshost IN A 203.0.113.53
;external1 IN A 203.0.113.10
external1 IN A 192.168.1.2
external2 IN A 203.0.113.20
external3 IN A 203.0.113.30
firewall IN A 203.0.113.50
firewall-em0 IN A 203.0.113.50
firewall-em1 IN A 198.51.100.50
firewall-em1 IN AAAA 2001:db8:12::50
internal IN A 198.51.100.200

; name servers - AAAA records

233

dnshost IN AAAA 2001:db8:12::53
v6only IN AAAA 2001:db8:12::6

===

localhost-forward

$TTL 3h
localhost. SOA localhost. nobody.localhost. 42 1d 12h 1w 3h
 ; Serial, Refresh, Retry, Expire, Neg. cache TTL

 NS localhost.

 A 127.0.0.1
 AAAA ::1

===

localhost-reverse

$TTL 3h
@ SOA localhost. nobody.localhost. 42 1d 12h 1w 3h
 ; Serial, Refresh, Retry, Expire, Neg. cache TTL

 NS localhost.

1.0.0 PTR localhost.

1.0 PTR localhost.

===

managed-keys.bind

$TTL 0 ; 0 seconds
. IN SOA . . (
 100 ; serial
 0 ; refresh (0 seconds)

234

 0 ; retry (0 seconds)
 0 ; expire (0 seconds)
 0 ; minimum (0 seconds)
)
 KEYDATA 20241202213508 19700101000000 19700101000000 0 0 0 ; placeholder

===

ptr_192.168

$TTL 3600
@ IN SOA example.com. jpb.example.com. (
 3 ; Serial
 3h ; Refresh
 1h ; Retry
 1w ; Expire
 1h) ; Negative Cache TTL
;

; name servers - NS records
 IN NS dnshost.example.com.

; PTR Records

53.1 IN PTR dnshost.example.com.
2.1 IN PTR external1.example.com.

===

ptr_198.51

$TTL 3600
@ IN SOA example.com. jpb.example.com. (
 3 ; Serial
 3h ; Refresh
 1h ; Retry
 1w ; Expire
 1h) ; Negative Cache TTL
;

235

; name servers - NS records
 IN NS dnshost.example.com.

; PTR Records

50.100 IN PTR firewall-em1.example.com.
200.100 IN PTR internal.example.com.

===

ptr_203.0

$TTL 3600
@ IN SOA example.com. jpb.example.com. (
 3 ; Serial
 3h ; Refresh
 1h ; Retry
 1w ; Expire
 1h) ; Negative Cache TTL
;

; name servers - NS records
 IN NS dnshost.example.com.

; PTR Records

53.113 IN PTR dnshost.example.com.
10.113 IN PTR external1.example.com.
20.113 IN PTR external2.example.com.
30.113 IN PTR external3.example.com.
50.113 IN PTR firewall-em0.example.com.

===

ptr_ipv6

$TTL 3600
@ IN SOA example.com. jpb.example.com. (

236

 3 ; Serial
 3h ; Refresh
 1h ; Retry
 1w ; Expire
 1h) ; Negative Cache TTL
;

@ IN NS dnshost.example.com.

$ORIGIN 0.0.0.0.2.1.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
3.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR dnshost.example.com.
6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR v6only.example.com.

===

managed-keys.bind

$ORIGIN .
$TTL 0 ; 0 seconds
@ IN SOA . . (
 100 ; serial
 0 ; refresh (0 seconds)
 0 ; retry (0 seconds)
 0 ; expire (0 seconds)
 0 ; minimum (0 seconds)
)
 KEYDATA 20220502020339 19700101000000 19700101000000 0 0 0 ; placeholder

===

237

Index
@

-blockdev, 168
-device, 168
-netdev, 168
.screenrc, 227
/boot/loader.conf, 171
/etc/syslog.conf, 170
464XLAT, 107, 136, 140
5-tuple, 95
64:ff9b::, 127, 130, 132, 134, 134

A

abort, 144
abort6, 144
add, 17
add a serial console, 171
address

list, 29
range, 29
range increasing, 30
sparse addressing, 29

alias, 157
aliasing, 122
allow/accept/pass/permit, 18
allow_private, 131, 134
antispoof, 153
Appendix A, 107

B

bandwidth, 87, 95, 95
bind9, 5, 125, 129
binding

key, 172, 226
BMP, 107
bridge, 8, 79, 111, 148, 162, 168, 170, 176
bsdclat464.sh, 138, 169
bsdplat464.sh, 169
buckets, 93, 94
burst, 93

C

call/return, 18, 60
endless loop, 61
error, 62
example, 60, 61

general notes, 63
syntax, 61

check-state, 18
CLAT, 135, 136
clear counters, 26
cmake, 169
cmdwatch, 59, 168
comconsole, 171
console

serial, 107, 170, 171, 171, 173, 226
virtual, 170, 170

console.log, 170
control key, 172, 226, 227
count, 18
counters, 26

D

delay, 93, 96
delete, 17
deny/drop, 18
deny_in, 123
developers, 5
DHCP, 168, 170, 176
DISPLAY, 166
divert, 18, 47, 53

example, 54
execution, 55
general notes, 57
object, 55
permission denied, 56
ruleset, 54
socket, 53
socket notes, 58
source code, 53
view with netstat, 54

divert.c, 178
dnctl, 88
DNS64, 106, 125, 126, 129, 130, 131
dnshost.sh, 178
doas, 8
dst-port, 31
dumb terminal, 171
dummynet, 84, 85, 87, 89, 95
dynamic pipe, 101
dynamic queue, 95, 95

238

E

ECN, 49
enable/disable, 17
external1.sh, 178
external2.sh, 178
external3.sh, 178

F

fbsd.iso, 176
fetch, 167
FIFO, 91, 94
firewall.sh, 178
firewall2.sh, 178
flags

SYN, 112, 113, 126
flow mask, 95, 96, 100
flow queue, 94
flow rate, 103
flush, 17
full screen, 170

G

git, 169
github, 9, 177
global, 124
goodput, 85, 87
GUI, 8

H

hping3, 11, 149, 150, 151, 168

I

IANA, 26
ICMP, 47, 48

reply, 48
icmptypes, 132
internal.sh, 178
iperf3, 11, 85, 85, 88, 89, 95, 97, 98, 98, 98, 103,

168
ipfw

-D, 21
-d, 21, 63
-S, 34
-SaD, 59
divert, 53
show, 51

ipfw0, 40
ipfw_nat, 115

ipfw_nat64stl, 134
ipid, 149
iplen, 149
ipprecedence, 149
ipttl, 149, 151
ipv6, 5, 125
ISO, 107, 167

J

jail, 157
configuration, 159, 162
jailid, 161
name, 161
VNET, 161
vnet, 162, 163, 164

jail1.sh, 178
jot, 86
juniper, 135

K

keyword
and, 28
any, 28
call, 60
divert, 47, 53
flush, 38
gid, 63
limit, 58
log, 41
logamount, 44
lookup, 65
me, 28
not, 28
ports, 30
prob, 32
redirect_addr, 121
reset, 46
resetlog, 44
return, 60
sctp, 76
set, 33
setdscp, 49
skipto, 50
table, 66, 66
tablearg, 68
tee, 47
uid, 63
unreach, 47

239

valtype, 71

L

libalias, 108
limit, 18, 58

example, 59
flow element, 58
sample run, 59

list, 17
load balancing, 122
load sharing NAT, 106
log, 26

.debug level, 42

.info level, 42
/etc/syslog.conf, 42
count actions, 40
ipfw0, 41
LOG_SECURITY, 42
logamount, 44, 45
match, 43
Method 1, 41
Method 2, 42
mutually exclusive, 44
reading with tail -f, 43
reset, 47
resetlog, 44, 44
syslog buffering, 43
syslogd, 43

log file, 145
log/logamount, 18
logging, 40

example, 40
ipfw0, 40
syslog, 40

lookup, 18
key, 65
value, 65

lookup table, 29, 65
addr, 65
create, 66
flow, 66, 67, 71, 73
general notes, 74
iface, 66
MAC, 66
number, 66
type notes, 74
types, 65
uses, 67

lookup tables, 18
LSNAT, 106, 116, 116, 119, 121
lynx, 119, 120, 121, 132, 134, 143, 168

M

mark, 144, 146
mask, 95
me6, 28
mkbr.sh, 79, 108, 109, 117, 145, 145, 148, 178
module

dummynet, 95
ipdivert, 54, 58
ipfw, 8, 12, 110, 131, 134, 148
ipfw_nat, 8, 110, 119
ipfw_nat64, 131, 134
ipfw_nptv6, 8, 148
sctp, 76, 78

mouse
grab, 170

N

NAT, 106, 108, 110
object, 110
static, 111

NAT64, 106, 125, 125, 131, 131, 133, 135
nat64clat, 143
NAT64LSN, 125
nat64lsn, 131, 143
NAT64STL, 133
natd, 108, 115
nc, 164
ncat, 8, 20, 31, 39, 49, 59, 149, 150, 151, 153, 156,

157
netcat, 8
networks

private, 170
nginx, 5, 118, 139, 168
nmap, 8, 168
NPTv6, 146, 149

O

omit flag, 97
operator

or, 27
or-block, 27, 28

P

pane, 225

240

ping, 113, 115, 118, 122, 140
ping6, 132, 134
pipe, 84, 87, 89, 90, 91, 92, 100, 102, 103, 110

delete, 105, 105
PLAT, 136
port number, 98
ports

/etc/services, 30
examples, 30
ranges, 30

privilege, 8
prob, 18, 32, 122
protocol

/etc/protocols, 26
keywords, 27
list, 27
other examples, 58

proxy_only, 124

Q

qcow2, 168, 176
QEMU, 8, 9, 166, 167, 171

pkg install, 167
qemu-img, 168
qfq, 93
QFQ algorithm, 92
queue, 84, 87, 91, 93, 94, 95, 97, 100, 100, 110

delete, 105
queue mask, 98
queue weight, 99
Quick Start, 9, 16, 170, 173

R

red, 93, 100
redirect_address, 116
redirect_port, 116
redirect_proto, 116
reset, 18, 18, 46, 123

view, 46
reverse, 123
RFC

1918, 131
2391, 116
2474, 49
3260, 49
3849, 10, 125, 129
4960, 76
5737, 10, 129

6052, 125
6146, 125, 126
6147, 127
6296, 146, 149
6877, 135, 135
6890, 131
791, 150

Round Robin scheduler, 92
rule

add, 19
addresses, 28
allow, 19
basic keywords, 17
comments, 33
delete, 23
dynamic, 19, 20
example syntax, 16
flush, 24
general format, 16
keep-state, 19
list, 24
log, 40
manually create dynamic, 21
number list, 24
number range, 24
numbering, 21
rule body, 16
same number, 22
setup, 19
show, 24, 25
syntax constructs, 19
tag, 39
viewing dynamic, 21
zero, 26
zero default rule, 26

rules, 8
ruleset, 8, 11, 90

development, 17
runvm.sh, 79, 108, 109, 117, 148, 178

S

same_ports, 123
sched, 84, 87, 91, 92

delete, 105
scheduler type, 105
scheduling algorithm, 85
scim.sh, 172, 178, 227, 227, 227
screen, 171, 171, 226, 227

241

SCRIPTS, 107, 167
scripts, 8
SCTP, 76

4-way handshake, 77
association, 76
building usrsctp, 81
tsctp example, 80
tsctp test tool, 78
two-rule version, 81
typical packet, 77
UDP encapsulation, 81
usrsctp, 81
versions, 76
view with netstat, 77

SDL, 166, 167
serial devices, 171
serial keyword, 171
session, 172, 172, 225, 227
set, 18

disable, 34
enable, 34
set 0 default, 37
set 31, 36, 37
swap, 35
swap disabled, 35

setdcsp
code points, 49

setdscp, 18, 49
ECN, 49
service classes, 49

setmark, 144, 146
sets, 33

caveats, 33
setup, 120
show, 17
simple NAT, 106
skip_global, 124
skipto, 18, 50

general notes, 51
slow start, 97
Special Use Addresses, 10
src-port, 31
stateful translation, 125
stateless translation, 125
static queue, 95
status bar, 172, 226, 227
steady state, 97
sudo, 8, 167

swim.sh, 172, 178, 226
sysctl

net.inet.ip.forwarding, 110, 138, 139
net.inet.ip.fw.autoinc_step, 21
net.inet.ip.fw.dyn_count, 59
net.inet.ip.fw.dyn_udp_lifetime, 59
net.inet.ip.fw.nat64_debug, 132, 134
net.inet.ip.fw.nat64_direct_output, 132, 134,

138
net.inet.ip.fw.one_pass, 148
net.inet.ip.fw.tables_max, 74
net.inet.ip.fw.tables_sets, 74
net.inet.ip.fw.verbose, 40, 44, 132, 134, 145,

148, 151
net.inet.ip.fw.verbose_limit, 45
net.inet6.ip6.forwarding, 138, 139, 148

syslog, 145, 170
/etc/syslog.conf, 40

syslogd, 149, 170

T

T1 line, 90
table, 29

destroy, 68
example, 70, 71
flow, 73
flow examples, 73
flow table, 71
limit example, 71
value, 67
with skipto, 69

tablearg, 68, 124
example, 68

tag, 18, 39
example, 39

tap, 8, 79, 148, 168, 170, 176
tcon.sh, 11, 13, 19, 34, 50, 178
tconr.sh, 11, 178
tcont.sh, 11, 178
TCP

3-way handshake, 20, 63
tcpack, 152
tcpdatalen, 152
tcpdump, 111, 112, 112, 114, 115, 122, 142, 149,

151
tcpflags, 152
tcpmss, 152
tcpoptions, 152

242

tcpseq, 152
tcpwin, 152
tee, 18, 47
telnet, 111, 112, 113, 171, 171, 173
throughput, 86
tmux, 171, 171, 171, 172, 173, 225, 225, 225, 226
traffic shaping, 87
transfer speed, 86
tserv.sh, 11, 12, 19, 19, 152, 160, 178
tserv3.sh, 11, 50, 178
ttl, 150, 151

U

ucon.sh, 11, 70, 178
uconr.sh, 11, 25, 178
ucont.sh, 11, 32, 41, 145, 178
UFS, 168, 176
uid/gid, 63

example, 64
general notes, 65
ICMP issue, 65
usage, 64

unreach, 18, 47
unreg_cgn, 114
unreg_only, 114
userv.sh, 11, 32, 64, 145, 156, 157, 178
userv3.sh, 11, 24, 41, 55, 59, 61, 61, 70, 178
userv5.sh, 178

V

v6only.sh, 178
verrevpath, 153
versrcreach, 153
virtual machine, 8, 166
virtual terminal, 166
virtualization, 166
VM, 107
vm_envs.sh, 178
VM_SCRIPTS, 169

W

weight, 93, 95, 96, 100, 100
Well Known Prefix, 127, 131
WF2Q+ algorithm, 92, 92
wfq2, 105
window, 225

X

XLAT464, 135
XLAT464 CLAT, 135

Z

ZFS, 168, 176

243

	IPFW Primer
	Table of Contents
	Acknowledgments
	Preface
	Shell Prompts
	Typographic Conventions
	Notes, Tips, Important Information, Warnings, and Examples

	Chapter 1. Introduction
	1.1. Quick Start

	Chapter 2. IPFW Operation
	2.1. Firewall Server Scripts
	2.2. External VM Scripts
	2.3. Loading IPFW
	2.4. Initial Firewall Setup

	Chapter 3. IPFW Rules
	3.1. Practical Ruleset Development
	3.2. Dynamic Rules
	3.2.1. Notes on Rule Numbering

	3.3. Keywords
	3.3.1. Protocols
	3.3.2. Addresses
	3.3.3. Ports
	3.3.4. Prob
	3.3.5. Sets
	3.3.6. Tags
	3.3.7. Logging
	3.3.7.1. Method 1 – using ipfw0, the IPFW pseudointerface
	3.3.7.2. Method 2 – use syslogd
	3.3.7.3. Using Method 1
	3.3.7.4. Using Method 2

	3.3.8. Reset
	3.3.9. Tee
	3.3.10. Unreach
	3.3.11. Setdscp
	3.3.12. Skipto
	3.3.13. Divert
	3.3.14. Other Protocols
	3.3.15. Limit
	3.3.16. Call and Return
	3.3.17. Using uid and gid in rules

	3.4. Lookup Tables
	3.4.1. Creating Lookup Tables
	3.4.2. Using Tables in Rules
	3.4.2.1. Understanding the Word tablearg
	3.4.2.2. More on flow tables

	3.5. Stream Control Transport Protocol (SCTP)
	3.5.1. SCTP Versions
	3.5.2. SCTP Protocol Operation
	3.5.3. Using the TSCTP Testing Tool on FreeBSD
	3.5.4. Downloading and Building usrsctp Programs
	3.5.5. Encapsulated Echo Server and Client with IPFW

	Chapter 4. IPFW Dummynet and Traffic Shaping
	4.1. Measuring Default Throughput
	4.2. IPFW Commands for Dummynet
	4.2.1. Simple Pipe Configuration
	4.2.2. Simple Pipe and Queue Configuration
	4.2.3. Relationships
	4.2.4. Dynamic Pipes
	4.2.5. Other Pipe and Queue Commands

	4.3. Adding Additional Virtual Machines

	Chapter 5. ipfw NAT
	5.1. General Procedures for Working NAT Examples
	5.2. Setting Up for Simple NAT
	5.3. Setting Up for LSNAT
	5.3.1. Setting up LSNAT- One address (10.10.10.10)
	5.3.2. Engaging Multiple Hosts With LSNAT

	Chapter 6. IPv6 Network Address Translation (IPv6NAT)
	6.1. Stateful NAT64 (NAT64LSN) With DNS64
	6.1.1. Setting Up for NAT64 / DNS64
	6.1.2. Setting Up the dnshost VM
	6.1.3. Setting Up for Stateless NAT64 - NAT64STL

	6.2. 464XLAT

	Chapter 7. Other Keywords
	7.1. abort / abort6
	7.2. mark / setmark
	7.3. NPTv6
	7.3.1. NPTv6 Setup
	7.3.2. NPTv6 Testing

	7.4. ipttl
	7.4.1. ipttl Setup
	7.4.2. ipttl Testing

	7.5. tcpdatalen
	7.6. verrevpath / versrcreach / antispoof
	7.7. jail
	7.7.1. Host-based Jail Networking
	7.7.2. Virtual Network (VNET) Jail Networking

	Appendix A: Appendix A: QEMU Setup
	A.1. QEMU and VM Installation Process
	A.1.1. Disabling Syslog Messages to the Console in the Virtual Machines
	A.1.2. Adding and Managing Serial Console Access to the VMs

	A.2. Using mkbr.sh for Bridge and Tap Setup

	Appendix B: Appendix B: Scripts and Code for QEMU Lab
	Appendix C: Appendix C: Networking References
	Appendix D: Appendix D. Managing Serial Terminals with tmux and screen
	D.1. Using tmux(1) for Managing Serial Terminals
	D.2. Using screen(1) for Managing Serial Terminals

	Appendix E: Appendix E: DNS Server Configuration
	Index

